摘要
考虑三维S tokes问题的一种混合有限元超收敛,采用满足B abuska-B rezz i条件的B ernad i-R auge l元,对三维空间中的立方体进行正则剖分,通过构造插值后处理算子以及应用B ram b le-H ibert引理得到的解精度提高一阶.
Superconvergence of a mixed finite element approximation for the three dimensional Stokes problem is presented. By using the Bernadi-Raugel mixed finite elements which satisfies the Babuska Brezzi condition a basic error is gained. Considering the problem on the piecewise uniform cuboid elements in the three-dimensional space, the convergence rate of the solution can be increased an order by using the interpolation and Bramble Hibert lemma.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2005年第12期1092-1095,共4页
Transactions of Beijing Institute of Technology
基金
北京理工大学基础科学研究基金项目(200307A22)