期刊文献+

实对称矩阵在求多元函数极值中的应用

The application of symmetry matrix when solve the extremism value of several-variables function
下载PDF
导出
摘要 设点P(a1,a2,…,an)是n元函数f(X)=f(x1,x2,…,xn)的一个稳定点,当P有增量ΔP=(h1,h2,…hn)时,相应地函数有增量Δf=f(P+ΔP)-f(P).根据Δf的不同情况,可以判断f(P)是不是极值,是极大值还是极小值.由泰勒(Taylor)公式及高阶无穷小的概念知道,Δf的主要组成部分是一个关于h1,h2,…,hn的实二次型,其系数为f(X)在点P处对各自变量的二阶偏导数和二阶混合偏导数,其矩阵是一个实对称矩阵,用A表示,如果A为正定矩阵,则二次型为正定二次型,Δf>0,从而f(P)为极小值;如果A为负定矩阵,则二次型为负定二次型,Δf<0,从而f(P)为极大值;如果A既不正定,又不负定,则f(P)不是极值. If is a stable point of an n - variables function, and if point P gets an addition, the relative function also obtains an addition . In the different cases of , we can judge if is an extremism value: either maximized value or minimized value. Based on the definition of the Taylor formula and the infinitesimal, we know that the main part of is a real - quadratic function about while its coefficient is the second - order partial derivatives at the point P of , and its matrix is a real - symmetric matrix called A. If A is a positively definite matrix that the quadratic function is a positively definite quadratic function and , so is a minimized value. If A is a negatively definite matrix that the quadratic function is a negatively definite quadratic function and , so is a maximized. When A is neither positively defined nor negatively defined, is not an extremism value.
作者 苏淑真
出处 《西安欧亚学院学报》 2006年第1期82-84,共3页 Journal of xi‘an Eurasia University
关键词 多元函数 极值 稳定点 TAYLOR公式 正定矩阵 负定矩阵 extremism value of several- variables function stable point Taylor formula positively definite matrix negatively definite matrix
  • 相关文献

参考文献2

  • 1本书编写组.十六大报告辅导读本[M]人民出版社,2002.
  • 2毛泽东.毛泽东选集[M]人民出版社,1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部