期刊文献+

基于小波和自学习神经网络的图像分割 被引量:3

Image Segmentation Based on Wavelet Neural Networks with Adaptive Learning
下载PDF
导出
摘要 提出了一种新颖的基于小波神经网络构架的FLIR图像分割技术,旨在将小波变换的时—频局域特性与神经网络的自学习能力相结合,从而使FLIR图像的分割算法具有较强的逼近和容错能力。该算法在FLIR?ATR系统中得到应用,对于FLIR目标图像轮廓的提取和抑制杂散背景方面获得了良好的效果。 This paper presents a new FLIR image segmentation technique based on wavelet neural networks, aiming to fusing both local characteristic of wavelet time-frequency and adaptive learning by neural networks, and resulting in the powerful abilities of approximation and tolerate error in IR image segmentation.This new algorithm has been applied in a FLIR-ATR system, and got favorable results in achieving IR target contours and damping background noises.
作者 李朝晖 陈明
机构地区 西北工业大学
出处 《计算机应用研究》 CSCD 北大核心 2006年第1期246-249,共4页 Application Research of Computers
基金 "十五"国防预研资助项目(41303060202)
关键词 小波神经网络 图像分割 FLIR 自学习状态 Wavelet Neural Networks Image Segmentation FLIR Adaptive Learning
  • 相关文献

参考文献7

  • 1Syed A Rizvi. A Clutter Rejection Technique for FLIR Imagery Using Region-based Principal Component Analysis [ C ]. Part of the SPIE Conference on Automatic Target Recognition Ⅸ· Orlando Florida,1999.57-66.
  • 2Daubechies I. The Wavelet Transform, Time-frequency Localization and Signal Analysis[J]. IEEE Trans, Inform. Theory, 1990, (36):960-1005.
  • 3Qinghua Zhang, Benvensiste A. Wavelet Networks[J]. IEEE Trans.NN, 1992,3(6):889-898.
  • 4Bento Correia. Automatic Detection and Recognition of Stationary Motorized Vehicles in Infrared Images[ C ]. Part of the SPIE Conference on Automatic Target Recognition Ⅸ· Orlando Florida, 1999. 140-151.
  • 5Hayit Greenspan. Image Enhancement by Nonlinear Extrapolation in Frequency Space[J]. IEEE Transactions on Image Processing,2000,9(6):1035-1048.
  • 6阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2003.62-86.
  • 7АИ加卢什金.神经网络理论[M].北京:清华大学出版社,2002.140-202.

共引文献24

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部