期刊文献+

Sylvester方程的一种简便解法 被引量:1

A Simple Algorithm to Sylvester Equation
下载PDF
导出
摘要 讨论了Sylvester方程解的问题,给出了一种便于计算机实现的简便算法,该方法同样可用于求解Lyapunov方程,通过实例对该算法用来求Sylvester方程的合理性和有效性进行验证。 This paper discusses the solution to Sylvester equation, presents a simple algorithm, which can easily implemented through computers and is also suitable to solve Lyapunov Equation, and conducts tests for the rationality and validity of using this method to solve Sylvester Equation through some examples.
出处 《重庆工学院学报》 2005年第11期95-98,共4页 Journal of Chongqing Institute of Technology
关键词 矩阵方程 算法实现 稳定性分析 matrix equation algorithm implementation stability analysis
  • 相关文献

参考文献4

  • 1Brierley S D. Lee E B. Solution of theEquationA(z)X(z) +X(Z)B(z)= C(z) and Its Application to the Stability of Generalized Linear System [ J ]. Int J Control, 1994,40(6) :1065 - 1075.
  • 2Young N J. Formulse for the Solution of Lyapunov Matrix Equations[ J]. Int J control, 1980,31 ( 1 ): 159 -179.
  • 3邱海明,付明义.关于方程AX+XB=C的解法[J].控制与决策,1989,4(2):38-40. 被引量:11
  • 4段广仁,胡文远.关于矩阵方程AX-XC=Y[J].控制与决策,1992,7(2):143-147. 被引量:5

共引文献10

同被引文献12

  • 1ZAK S H. On the stabilization and observation of nonlinear uncertain dynamic systems [J]. IEEE Trans. on Automatic Control, 1990,35(5):865-868.
  • 2RAJESH R. Observers for Lipschitz nonlinear systems [J]. IEEE Trans. on Automatic Control, 1998,43 (3): 397-401.
  • 3ZHU Fang-lai, HAN Zheng-zhi. A note on observers for Lipschitz systems [J]. IEEE Trans. on Automatic Control, 2002,47(10):1 751-1 754.
  • 4PRABHAKAR R P, ZHU Yong-liang. Controller and observer design for Lipsehitz nonlinear systems [C]//Proceedings of the American Control Conference. Boston, Massachusetts, 2004.
  • 5ZEMOUCHE A, BOUTAYEB M. Observer design for Lipschitz nonlinear systems: the discrete time case [J]. IEEE Trans. on Circuits and Systems (Ⅱ: Express Briefs), 2006,53(8) :777-781.
  • 6GERTH R A. State Feedback Design Methods: Eigenstructure Assignment and LQR Cost Functional Synthesis [D]. Urbana Champaign: University Illinois, 1993.
  • 7LAM J,YAN W. A gradient flow approach to robust pole-placement problem [J]. International Journal of Robust and Nonlinear Control, 1995, 5:2 360-2 364.
  • 8BRIERLEY S D,LEE E B. Solution of the equation A(z)X(z)+X(z)B(z)=C(z) and its application to the stability of generalized linear system [J]. Int. J. Control, 1994,40(6) :1 065-1 075.
  • 9刘祖润,张志飞,章兢.Lipschitz非线性系统观测器设计[J].电机与控制学报,1999,3(4):231-234. 被引量:13
  • 10段广仁,胡文远.关于矩阵方程AX-XC=Y[J].控制与决策,1992,7(2):143-147. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部