摘要
说明了均匀、轴对称、无源介质是一个K-辛空间上的Hamilton系统,Hamilton 函数是系统的守恒量;数值计算辐射强度角分布的合理途径是将辐射迁移方程离散成以离散 Hamilton函数为守恒量的有限维K-辛空间上的正则方程,并采用保离散Hamilton函数守恒 的K-辛算法数值求解.
This paper shows that the homogeneous, axis-symmetric and no-source medium are a Hamiltonian system on K-symplectic space, whose Hamiltonian function is a conservation quantity; the reasonable approach of the numerical computation for the angular distribution of radiative intensity is that the radiative transfer equation is discretized into canonical equation on finite dimensional K-symplectic space and that this K-symplectic canonical equation is numerically solved by using the K-symplectic schemes which keep the discrete Hamiltonian' s conservation.
出处
《嘉兴学院学报》
2005年第6期41-43,共3页
Journal of Jiaxing University
基金
本文为国家自然科学基金(10171039
10074019)国家重大基础研究专项经费(G1999032804)资助课题部分研究成果
关键词
辐射迁移方程
K-辛空间
正则方程
radiative transfer equation
K- symplectic space
K-symplectic canonical equation.