期刊文献+

磁共振弥散张量成像在脑膜瘤诊断中的应用价值 被引量:9

Diagnosis of meningioma with MR diffusion tensor imaging
下载PDF
导出
摘要 目的运用磁共振弥散张量成像技术探讨ADC值、FA值与脑膜瘤病理分级的关系。方法27例术前行MR平扫、弥散张量成像及增强扫描并经手术病理证实的脑膜瘤患者。分别测量肿瘤实质区、瘤周水肿区、瘤周白质区和健侧对应部位的ADC值和FA值,并与病理结果进行对照研究。结果瘤周水肿区、肿瘤实质区、瘤周白质区三者之间ADC值存在显著差异(P<0.05),以瘤周水肿区为最高。瘤周白质FA值高于肿瘤实质区和瘤周水肿区,差别具有显著性意义,但后两者之间FA值无显著性差异。良、恶性脑膜瘤肿瘤实质区ADC值之间具有显著性差异;良、恶性脑膜瘤瘤周白质之间FA值有显著性差异。结论结合常规MR图像、ADC值、FA值有助于术前对脑膜瘤良、恶性进行鉴别。ADC值有助于区别脑膜瘤实质、瘤周水肿及瘤周白质区。 Objective To investigate the relationship of ADC values, FA values and pathological grade in meningiomas by using diffusion tensor imaging (DTI). Methods Twenty-seven cases of meningiomas with pathologic confirmation underwent routine MRI, DTI and enhanced scanning. ADC and FA values were measured in the solid part of tumors, the peritumoral edema, the white matter surrounding the edema and corresponding normal brain. Results There was significant difference of ADC values in the solid part of tumors, the peritumoral edema and the white matter surrounding the edema. FA values of the white matter surrounding the edema were higher than that of the solid part of tumors and the peritumoral edema respectively, and the difference was significant. The difference of ADC values in the solid part of tumors was statistically significant between malignant and benign meningiomas. There was significant difference of FA values in white matter surrounding the edema between malignant and benign meningiomas. Conclusion Combined with conventional MR imaging, ADC and FA values may predict the malignancy of meningiomas. ADC values can be used to differentiate the solid part of the tumors, the peritumoral edema and the white matter surrounding the edema.
出处 《中国医学影像技术》 CSCD 北大核心 2005年第12期1806-1809,共4页 Chinese Journal of Medical Imaging Technology
关键词 脑膜瘤 磁共振成像 弥散张量成像 Meningioma Magnetic resonance imaging Diffusion tensor imaging
  • 相关文献

参考文献2

二级参考文献53

  • 1[1]Melhem ER, Mori S, Mukundan G, et al. Diffusion tensor MR imaging of the brain and white matter tractography[J]. AJR, 2002, 178(1): 3-16.
  • 2[2]Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI[J]. J Magn Reson B, 1996, 111(3): 209-219.
  • 3[3]Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI[J]. Magn Reson Med,2002,48(1):128-136.
  • 4[4]Yamada K, Kizu O, Mori S, et al. Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience[J]. Radiology, 2003, 227(1):295-301.
  • 5[5]Mori S, van Zijl PC. A motion correction scheme by twin-echo navigation for diffusion-weighted magnetic resonance imaging with multiple RF echo acquisition[J]. Magn Reson Med,1998, 40(4):511-516.
  • 6[6]Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging[J]. Magn Reson Med, 1999, 42(3): 515-525.
  • 7[7]Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI[J]. J Magn Reson Imaging, 2001, 13(5):769-780.
  • 8[8]Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging[J]. Magn Reson Med, 1998, 39(5): 801-812.
  • 9[9]Bastin ME. Correction of eddy current-induced artifacts in diffusion tensor imaging using iterative cross-correlation[J]. Magn Reson Imaging, 1999, 17(7):1011-1024.
  • 10[10]Poupon C, Mangin J, Clark CA, et al. Towards inference of human brain connectivity from MR diffusion tensor data[J]. Med Image Anal, 2001, 5(1):1-15.

共引文献39

同被引文献87

引证文献9

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部