摘要
设G是n阶k-连通图(k≥3).称G的独立集S为一个基本集,如果存在{u,v}S使得dist(u,v)=2.本文证明了下述结论:如果对G的任-k-基本集S,有max{d(u)|uS}≥ 则G或者是Hamilton-连通的或者属于两类例外图之一。
Let G be a k-connected(k≥3) graph of order n. An independent set S of G is called essential if there exists ,such that dist(u,v)=2. In this paper we shall prove that if for any essential set S with k venices of G,then either G is Hamilton-connected or G is one of two classes of exceptional graphs.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
1996年第1期5-12,共8页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金
省教委自然科学基金