期刊文献+

基于数据挖掘的VaR测量算法研究

Research of Algorithm to Measure Value-at-Risk Based on Data Mining
下载PDF
导出
摘要 提出了将数据挖掘中分位数图的思想应用于VaR测量的新方法,为风险控制和投资决策探索了一种新思路.从设定时间区间内的证券组合对数收益率序列里,求出给定置信水平下不同时间段的分位数,得到分位数序列,由此建立回归方程,预测组合未来特定一段时间内收益率序列的分位数,然后再根据组合的市值大小,直接计算出VaR值.该算法能够有效地处理组合收益非正态分布和非线性组合的情况,在社保基金投资管理系统中得到应用,在国内证券市场数据上进行实验,并采用失败频率检验法来验证算法的精确性,结果表明,该算法是可靠的,有较好的鲁棒性. The thought of quantile plot in data mining was promoted novelly to measure VaR for risk control and invest decision. First, quantiles of different time period were estimated from the series of portfolio's log return with given confidence level. Secondly, quantile regression equation was constructed from quantile series to forecast portfolio's log return in future. Thirdly, according to portfolio's market value, VaR was calculated. This novel algorithm can effectively process portfolio return's non-normal distribution and non-linear portfolio. The algorithm was adopted by Chinese Social Security Fund invest management system and the experi- ments were based on the data of Chinese securities exchange. Its accuracy was verified with Failure Frequency Method, and the results show that the algorithm is reliable and robust.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期1136-1140,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 数据挖掘 分位数图 回归方程 VAR data mining quantile plot regression equation VaR
  • 相关文献

参考文献9

  • 1Philipe Jorion.Value at Risk:The New Benchmark for Controlling Derivative Risk [M].New York:The McGraw-Hill Companies,Inc.,2000.
  • 2Tailor J W.A quantile regression approach to estimating the distribution of multiperiod returns[J].Journal of Derivatives,1999,7:64-78.
  • 3Koenker R P,Portnoy S.Quantile smoothing splines[J].Biometrika,1997,81:673-680.
  • 4Koenker R,Park B.An interior point algorithm for nonlinear quantile regression[J].Journal of Econometrics,1996,71:265-283.
  • 5Pritsker M.Evaluating Value at Risk Methodologies[J].Journal of Financial Services Research,1997,12(2/3):201-242.
  • 6Paul Glasserman,Heidelberger P.Stratification issues in estimating Value-at-Risk[C],in Proceedings of the 1999 Winter Simulation Conference[A].New Jersey:IEEE Computer Society Press,Piscataway,1999:351-358.
  • 7Jiawei Han.Data Mining:Concepts and Techniques[M].San Mateo:Morgan kaufmann publishers,Inc,2000.
  • 8吕静,王晓峰,Osei Adjei,Fiaz Hussain.序列模式图及其构造算法[J].计算机学报,2004,27(6):782-788. 被引量:16
  • 9刘君强,孙晓莹,王勋,潘云鹤.挖掘最大频繁模式的新方法[J].计算机学报,2004,27(10):1328-1334. 被引量:15

二级参考文献17

  • 1[1]Agrawal R., Imielinski T., Swami A.. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D. C. , USA, 1993, 207~216
  • 2[2]Lin D-I. , Kedem Z. M.. Pincer-search: A new algorithm for discovering the maximum frequent set. In: Proceedings of the 6th International Conference on Extending Database Technology, Valencia, Spain, 1998, 105~119
  • 3[3]Bayardo R. J.. Efficiently mining long patterns from databases.In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA,1998, 85~93
  • 4[4]Aggarwal C. , Agarwal R. , Prasad V. V. V.. Depth first generation of long patterns. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Boston, MA, USA, 2000, 108~118
  • 5[5]Burdick D. , Calimlim M. , Gehrke J.. MAFIA: A maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, 443~452
  • 6[6]Agrawal R. , Srikant R.. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994, 487~499
  • 7[7]Liu Jun-Qiang, Pan Yun-He, Wang Ke, Han Jia-Wei. Mining frequent item sets by opportunistic projection. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Alberta, Canada, 2002, 229~238
  • 8[8]Wang Ke, Liu Tang, Han Jia-Wei, Liu Jun-Qiang. Top down FP-growth for association rule mining. In: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, Taiwan, China, 2002, 334~340
  • 9Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995,3~14
  • 10Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, Morgan Kaufmann,1994, 487~499

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部