期刊文献+

Ab Initio Calculation of 4f→5d Transition Energy and Electronic Structure of Ce^(3+) Doped in LiYF_(4) Crystal

Ab Initio Calculation of 4f→5d Transition Energy and Electronic Structure of Ce^(3+) Doped in LiYF_4 Crystal
下载PDF
导出
摘要 The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al. The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第4期405-405,共1页 稀土学报(英文版)
关键词 LiYF4 Ce^3 DV- Xa transition state 4f→5d embedded cluster rare earths LiYF4 Ce^3 + DV- Xa transition state 4f→5d embedded cluster rare earths
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部