摘要
A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution, thermal stability and phase structure. The electrical conductivity of the samples was investigated by four-probe technique. With the increase of substituted-ionic radius, the temperature of phase formation increases, and the solid solubility decreases gradually, respectively. The La0.6Ca0.4FeO3-δ(LCF)powder is pure cubic perovskite-type crystalline after fired at 850℃ for 2 h. The XRD patterns of La0.6Sr0.4FeO3-δ(LSF) powder shows a small quantity of SrO peaks sintered at 1050℃ for 2 h. The electrical conductivity of LCF and LSF at 500 - 800℃ is over 100 S·cm^ - 1, and the value of LCF is 1170 S·cm^ - 1 at 800℃, which indicate that LCF and LSF may be used as a profitable cathode for IT-SOFCs. The characteristic of La0.6 Ba0.4FeO3-δ(LBF) is poor, and the electrical conductivity at intermediate temperatures is 1/20 less than that of LSF.
A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution, thermal stability and phase structure. The electrical conductivity of the samples was investigated by four-probe technique. With the increase of substituted-ionic radius, the temperature of phase formation increases, and the solid solubility decreases gradually, respectively. The La0.6Ca0.4FeO3-δ(LCF)powder is pure cubic perovskite-type crystalline after fired at 850℃ for 2 h. The XRD patterns of La0.6Sr0.4FeO3-δ(LSF) powder shows a small quantity of SrO peaks sintered at 1050℃ for 2 h. The electrical conductivity of LCF and LSF at 500 - 800℃ is over 100 S·cm^ - 1, and the value of LCF is 1170 S·cm^ - 1 at 800℃, which indicate that LCF and LSF may be used as a profitable cathode for IT-SOFCs. The characteristic of La0.6 Ba0.4FeO3-δ(LBF) is poor, and the electrical conductivity at intermediate temperatures is 1/20 less than that of LSF.
基金
Project Supported bythe Natural Science Foundation of Bureau Education Anhui Province (N2004kj326)