期刊文献+

关联规则数据挖掘与发展趋势研究 被引量:5

Research on Association Rules Data Mining and Developing Direction
下载PDF
导出
摘要 论文首先简要地介绍关联规则的概念、基本原理及分类。然后详细地讨论了Apriori算法的基本原理,同时也指出了Apriori算法的一些缺陷。针对这些缺陷提出了解决方法,列举了几种改进算法。最后概述了关联规则数据挖掘的发展趋势。 In this paper, Firsdy,the concept,basic principle and sort of Association Rules are introduced simply.Then, The basic principle of Apriori algorithm is discussed in detail.Some limitations of Apriori algorithm are also presented. Combining solution methods for those limitations,several improved algorithms for Apriori algorithm are enumerated. Finally,developing directions of Mining Association Rules in the future are summarized.
作者 曾孝文
出处 《电脑知识与技术》 2005年第12期4-5,8,共3页 Computer Knowledge and Technology
关键词 关联规则 数据挖掘 APRIORI算法 改进算法 Association Rules Data Mining Apriori algorithm improved algorithms
  • 相关文献

参考文献3

二级参考文献21

  • 1R Srinkant, R Agrawal. Quantitative Association Rules in Large Relational Table in Proceedings of the ACM-SIGMOD Conference on Management of Data[C].Montreal,Canada,1996:1-12.
  • 2范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data, 1993, 207-216.
  • 4Han J, Pei J, Yin Y. Mining frequent pattems without candidate generation [C]. Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 00), Dalas, TX, 2000.
  • 5Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very large Database,1995.
  • 6Mannila H, Toivonen H, Verkamo A. Efficient algorithm for discovering association rules[C]. AAAI Workshop on Knowledge Discovery in Databases, 1994.181-192.
  • 7Toivonen H. Sampling large databases for association rules[C].Bombay, India: Proceedings of the 22nd International Conference on Very Large Database, 1996.
  • 8Brin S, Motwani R, Silverstein C. Beyond market baskets: Generlizing association rules to correlations[C]. Proceedings of the ACM SIGMOD, 1996. 255-276.
  • 9Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules[C]. San Jose, CA:Proceedings of ACM SIGMOD International Conference on Management of Data, 1995. 175-186.
  • 10Ng R, Lakshmanan L V S, Han J. Exploratory mining and pruning optimizations of constrained associations rules[C]. Seattle,Washington: Proceedings ofACM SIGMOD International Conference on Management of Data, 1998.13-24.

共引文献51

同被引文献65

引证文献5

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部