期刊文献+

SAR复图像域上的噪声抑制和目标特征提取 被引量:9

The Noise-Suppression and Feature-Extraction in SAR Complex-Imagery Domain
下载PDF
导出
摘要 基于SAR图像的稀疏先验,提出了一种基于lk范数的复图像域正则化方法,用于SAR复图像的噪声抑制和目标特征提取.文中通过算法设计及其收敛性的研究,保证了该方法的可行性和稳健性.同时,基于正则化方法与广义岭估计的契合之处,提出了一种新的正则化参数的选取方法.理论分析和实验结果均表明,本文方法可操作性强,具有有效的噪声抑制和目标特征稀疏表示寻优功能. For the noise suppression and target's feature-extraction of the synthetic aperture radar (SAR) imagery in complex domain, a regularization method based on lk norm is presented in SAR complex imagery domain in terms of the sparse prior of SAR imagery. The design of the algorithm and the research on its convergence assure the feasibility and robustness of this method. The coupling between the regularizafion method and ridge estimate afford a new idea of the choice of the regularization parameters. Numerical results demonstrate that our method can efficiently depress noise and extract the target's feature of SAR image.
作者 赵侠 王正明
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第12期2135-2138,共4页 Acta Electronica Sinica
基金 全国优秀博士论文作者专项基金(No.200140) 国家自然科学基金(No.60272013)
关键词 合成孔径雷达 稀疏表示 噪声抑制 特征提取 正则化 岭估计 SAR sparse representation noise suppression feature extraction regulaxization ridge estimate
  • 相关文献

参考文献9

  • 1Lee S J. Digital image enhancement and noise filtering by useof local statistics[J]. IEEE Trans, 1980, PAMI-2(2) : 165 - 168.
  • 2赵侠,王正明,汪雄良,朱炬波.复图像域正则化特征增强SAR成像方法[J].系统工程与电子技术,2004,26(8):1044-1048. 被引量:3
  • 3周宏潮,朱炬波,王正明.SAR图像增强的前向-后向扩散方程方法[J].电子学报,2004,32(12):2070-2073. 被引量:6
  • 4朱炬波.[D].长沙:国防科技大学研究生院,2004:28—35.
  • 5D L Donoho. Sparse Components of Images and Optical Atomic Decompositions [ DB/OL ]. http://www.stat.Stanford.edu/,1998.
  • 6N P Galatsanos, A K KAtsaggelos. Methods for choosing the regularization parmneter and estimating the noise variance in image restoration and their relation[ J ]. IEEE Trans, 1992, IP1(3) :322 - 336.
  • 7Richard C Aster, Brian Borchers, Clifford Thurber. Parameter Estimation and Inverse Problems [ DB/OL]. http://www.eeees.nmt. edu/Geop/Classes/GEOP529/Docs/draft, pdf,2004.
  • 8袁孝康.星载合成孔径雷达的分辨特性^[M].北京:国防工业出版社,2003.291.
  • 9M Cetin, W C Karl, D A Castanon. Evaluation of a regularized SAR imaging technique based on recognition-oriented features[ A ]. Algorithms for Synthetic Aperture Radar Imagery Ⅶ [C]. Orlando, FL, USA: SPIE, 2000.40 - 51.

二级参考文献12

  • 1Cetin Mujdat, Karl W C. Feature-Enhanced Synthetic Aperture Radar Image Formation Based on Non-Quadratic Regularization [ J ]. IEEE Trans. on Image Processing,2001,10(4) :623 - 631.
  • 2Cetin Mujdat,Karl W C. A Statistical Topographic Approach to Synthetic Aperture Radar Image Reconstruction[M]. Santa Barbara,CA, 1997(10): 845-858.
  • 3Donoho D L. Sparse Components of Images and Optical Atomic Decompositions[EB/OL]. http://www. stat. Stanford. edu/,1998.
  • 4Cetin Mujdat, Karl W C, Castanon D A. Evaluation of a Regularized SAR Imaging Technique Based on Recognition-Oriented Features [J]. SPIE,2000,4053(4):40-51.
  • 5M Cetin,W C Karl.Feature-enhanced synthetic aperture radar Image formation based on nonquadratic regularization[J].IEEE Trans,2001,IP-10(4):623-631.
  • 6J Weickert.A review of nonlinear diffusion filtering[A].Scale-Space Theory in Computer Vision[C].Berlin:Springer,1997.3-28.
  • 7G Gilboa,Nir A Sochen,Y Zeevi.Forward and backward diffusion processesfor adaptive image enhancement and denosing[J].IEEE Trans,2002,IP-11(7):689-703.
  • 8G Gilboa,Nir A Sochen,Y Zeevi.Image sharpening by flows based on triple well potentials[J].Journal of Mathematical Imaging And Vision,2004,20(1):121-131.
  • 9Frank M Candocia,Jose C Principe.A Method Using Models to Superresolve SAR Imagery[A].Proceedings of SPIE:Algorithms for Synthetic Aperture Radar Imagery[C].Orlando:SPIE,V.1998.197-207.
  • 10Air Force Research Laboratory.Model Based Vision Laboratory,Sensor Data Management System MSTAR [DB/OL].http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/mstar/

共引文献7

同被引文献57

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部