期刊文献+

IFS吸引子的界与其动力学性态的研究

Boundary of Attractors of Iterated Function Systems and Its Dynamic Characteristics
下载PDF
导出
摘要 阐述了迭代函数系(IteratedFunctionSystem,简称IFS)理论及随机迭代算法,通过理论解析给出了求IFS吸引子界的方法,介绍了IFS吸引子的Lyapunov指数和关联维数的算法。利用计算机构造了一系列IFS吸引子,计算了IFS吸引子的界、Lyapunov指数和关联维数,分析了IFS吸引子的动力学特征,讨论了当参数变化时IFS吸引子界的变化规律。 The iterated function systems (it is called ITS for short) theory and the random iteration algorithm were expounded. By the theory analysis, the method by which the boundary of attractors of ITS can be evaluated was given out. The algorithm of determining the lyapunov exponent and the correlation dimension of the attractors of ITS was introduced. Utilizing the computer simulated a series of the attractors of ITS. The boundary, the lyapunov exponent and the correlation dimension of the attractors of ITS were calculated, and the dynamic characteristics of the attractors of ITS were analyzed. The changing regularity of the boundary of attractors of ITS was discussed when the control parameters were changed.
作者 王兴元
出处 《工程图学学报》 CSCD 北大核心 2005年第6期127-134,共8页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(69974008) 辽宁省自然科学基金资助项目(972194)
关键词 计算机应用 迭代函数系吸引子 随机迭代算法 LYAPUNOV指数 关联维数 computer application attractors of IFS random iteration algorithm Lyapunov exponent correlation dimension
  • 相关文献

参考文献13

  • 1Hutchinson J.Fractals and self-similarity[J].Univ.J.Math.,1981,30:713~747.
  • 2Barnsley M F.Fractals everywhere[M].Boston:Academic Press Professional,1993.3~97.
  • 3Barnsley M F,Demko S G.Iterated function systems and the global construction of fractals[J].The Proceedings of the Royal Society,London Ser,1985,A399:243~275.
  • 4Elton J,Yan Z.Approximation of measures by Markov processes and homogeneous affine iterated function systems [J].Constr.Approx.,1989,5:69~87.
  • 5Vrscay E R,Roehrig C J.Iterated function systems and the inverse problem of fractal construction using moments [A].In:Computers and Mathematics[C].New York:Springer-Verlag,1989.250~259.
  • 6王兴元,朱伟勇.IFS吸引子的计算机模拟[J].计算物理,2000,17(4):407-413. 被引量:8
  • 7王兴元,刘波.一类NMIFS吸引子的递归计算构造及特性分析[J].自然科学进展,2004,14(9):1039-1046. 被引量:4
  • 8王兴元.旋转对称的广义Lorenz奇怪吸引子[J].计算物理,2003,20(5):458-462. 被引量:10
  • 9Benettin G,Galgani L,Giorgilli A,et al.Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems:a method for computing all of them [J].Meccanica,1980,15:9~20.
  • 10Wolf A,Swift J B,Swinney H L,et al.Determining Lyapunov exponents from a time series[J].Physica 16D,1985,285~317.

二级参考文献31

  • 1WANG XingyuanSchool of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China.Relation of chaos activity characteristics of the cardiac system with the evolution of species[J].Chinese Science Bulletin,2002,47(24):2042-2048. 被引量:21
  • 2格莱克 张淑誉等(译).混沌:开创新科学[M].上海:上海译文出版社,1990.270-344.
  • 3格莱克著 张淑誉译.混沌:开创新科学[M].上海:上海译文出版社,1990.9-86.
  • 4Lorenz E N. Deterministic nonperiodic flow [ J]. J Atmos Sci, 1963,20: 130 - 141.
  • 5Benettin G, Galgani L, Strelcyn J M. Kolmogorov entropy and numerical experiments [J]. Plays Rev A, 1976,14:2338- 2345.
  • 6Grassberger P, Procaccia I. Characterization of strange attractors [J] .Phys Rev Lett, 1983,50:346- 355.
  • 7Packard N H, Crutchfield P, Farmer J D, Shaw R S. Geometry from a time series [J]. Plays Bey Lett, 1980,45:712- 716.
  • 8Brandstater A, Swinney H L. Strange attractors in weakly turbulent Couette-Taylor flow [J]. Phys Rev A, 1987,35:2207 - 2219.
  • 9Hutchinson J. Fractals and self-similarity. University Journal of Mathematics, 1981, 30: 713
  • 10Barnsley M F. Fractals Everywhere. Boston: Academic Press Professional, 1993. 15-40

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部