期刊文献+

基于人工神经网络的磨料水射流切削工艺建模(英文)

Modeling of Abrasive Waterjet Cutting Process Based on Artificial Neural Network
下载PDF
导出
摘要 磨料水射流(AWJ)切割工艺已经被遍及世界的许多车间所采用,其优点广为人知。为了进行精密加工,如精密切割、铣削、钻孔和磨削等,必须精确预测AWJ的侵蚀深度。文章基于人工神经网络(ANN)对AWJ切割工艺进行建模。模型采用三层结构,输入变量有水射流压力、水喷嘴直径、磨料粒子粒度(直径)、磨料流量和切割头进给速度。输出量为AWJ的切割深度。样本数据在JJ-I水射流切割机床上实验获取,A3钢样板作为切割试件。采用改进的BP算法和样本数据对建立的人工神经网络进行训练。训练好的网络以一定精度建立了AWJ切割工艺中各参数之间的映射关系。所建模型可以精确预测AWJ的切深。将该模型集成到AWJ切割机床的计算机数控器中,可以实现AWJ精密加工。 Abrasive water jet cutting is widely accepted by the machine shop over the world and its advantages are well known.In order to perform precise machining,such as precise cutting,milling,drilling and grinding etc.,it is necessary to precisely predict the cutting depth of abrasive water jet.Based on the artificial neural network(ANN),a model for the abrasive water jet cutting process is created.Three layers network topology is adopted.The input variables are water pressure,diameter of orifice,diameter of abrasive particles,flow rate of abrasive and feed rate of cutting head respectively.The output variables are cutting depth of abrasive water jet.The sample data set is collected on JJ-I water jet machining and mild steel A3 is used as the cutting sample material.The network is then trained based on sample data set using improved BP algorithm.The trained network establishes nonlinear relationships among the parameters of abrasive water jet cutting process at given accuracy.Thereafter the cutting depth can be precisely predicted using this ANN model.The precise machining process can be achieved by integrated this model into computer numerical controller.
出处 《西华大学学报(自然科学版)》 CAS 2006年第1期69-72,共4页 Journal of Xihua University:Natural Science Edition
基金 AcademicLeader-fosteringFoundationofSichuanHumanResourcesBureau(0422006)andFoundationofSichuanScience&TechnologyBureau(05202073)
关键词 磨料水射流 水射流切割 建模 人工神经网络 模型 abrasive water jet water jet cutting modeling, artificial neural network model
  • 相关文献

参考文献8

  • 1Hashish,M. A modeling study of metal cutting with abrasive waterjets[J]. Transactions of the ASME, Journal of Manufacturing Science and Engineering. 1984,106(1):88-100.
  • 2Hashish M. Prediction models for AWJ machining operations[J]. Proceedings of the 7th American Water Jet Conference, Seattle,Washington, pp. 205-216, August 28-31, (1993).
  • 3Zeng,J. and Kim,T. J. Parameter prediction and cost analysis in abrasive waterjet cutting operations [C]. Proceedings of the 7th American Water Jet Conference, Seattle,WA, 1993 : 175-189.
  • 4Babets, K. , Geskin, E. and Chaudhuri, B. Neural network model of waterjet depainting process [C]. Proceedings of the 10th American Water Jet Conference, Houston, Texas, 1999:Paper 4.
  • 5Hashish, M. Steel cutting with abrasive waterjets [C]. Proceedings of the 6th International Conference on Jetting Technology,BHRA, University of Surry, U. K., 1982:447-487.
  • 6Shengxiong Xue. Water Jet Technology And Its Applications[M]. Beijing: Machinery Industry Press, 1998 : 409-434.
  • 7Liming Zhang. Artificial Neural Network And Its Applications [M]. SHanghai: Fudan university Press, 1993:43-47.
  • 8Wei Wei. Technique Manual of MATLAB Control Engineering Toolbox [M]. Shanghai: National Defence Industry Press, 2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部