期刊文献+

支持向量机和BP网络改进模型的性能对比研究 被引量:3

Comparative Study on Support Vector Machine and Improved BP Network Models
下载PDF
导出
摘要 通过引入支持向量机(SVM)方法,提出了基于SVM的遥感图像多类分类模型,分析了SVM多类分类器的构造及其参数选取问题,并结合实例,讨论了SVM分类器性能随其本身参数变化情况,最后与几种代表性的BP网络改进模型进行了系统的对比分析。实验表明,SVM方法的分类时间要远大于改进的BP模型,而分类精度优于BP网络改进模型中效果最好的几种优化算法3个百分点左右,是一种有效的图像分类方法。 The paper imports Support Vector Machine (SVM), and proposes SVM-based multi-class classified model for remote sensing image, and analyzes construction and parameter choice problem of SVM classifier. At last taking remote sensing image classification as samples, change situation of SVM along with itself parameter is discussed, and comparative study on convergent velocity and classified effect is done among SVM and several improved BP network models. Experimental result suggests that classified consumed time of SVM is far longer than improved BP model and classified precision preponderate over the best improved BP models about 3 percent. It is a kind of efficient image classification method.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第1期169-173,共5页 Microelectronics & Computer
关键词 支持向量机 BP网络 性能对比 遥感图像分类 Support vector machine, BP network, Comparative study, Remote sensing image classification
  • 相关文献

参考文献8

  • 1Atkinson P M, Tatnall A R L. Neural Networks in Remote Sensing. INT J Remote Sensing, 1997, 18(4): 699-709.
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 3C Cortes, V Vapnik. Support Vector Networks. Machine Learning, 1995, 20:273-297.
  • 4Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2(2).
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 6Chapelle O, Haffner P, Vapnik V N. Support Vector Machines for Histogram-Based Image Classification. IEEE Trans on Neural Networks, 1999, 10(5): 1055-1064.
  • 7Berhard Scholkopf, Christopher J, et al. Advances in Kernel Methods: Support Vector Learning [M]. The MIT Press,1999.
  • 8Cecilio Angulo, Andreu Catala, K Svcr. A Multi-class Support Vector Machine. ECML, LNA11810, 2000:31-38.

二级参考文献1

共引文献2271

同被引文献42

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部