摘要
A novel technology which combined electrochemical process catalyzed by manganese mineral with electro-assisted coagulation process was proposed in this study. The mineralization of organic pollutant from simulated dye wastewater containing an azo dye Acid Red B(ARB) was experimentally investigated using this method. It was found that the manganese mineral could catalyze the electrochemical process dramatically. The TOC removal percentage of electrochemical treatment catalyzed by manganese mineral was 43.6% while the TOC removal percentage of the process using the manganese mineral alone and using the electrolysis alone were 9.3% and 20.8%, respectively. Moreover, it was found that combined electroxidation with electro-assisted coagulation process could more effectively eliminate ARB. After a period of 180 min electrooxidation and 300 min electroreduction, almost 66.9% of TOC was removed, and the dissolved Mn^2+. could be effectivly removed. The effects of the order of oxidation and reduction, the proper ratio electrooxidation/reduction time, and current density on the removal efficiency were investigated in detail. In addition, a proposed mechanism of manganese-mineral-catalyzed electrooxidation-reduction process was discussed in this paper.
A novel technology which combined electrochemical process catalyzed by manganese mineral with electro-assisted coagulation process was proposed in this study. The mineralization of organic pollutant from simulated dye wastewater containing an azo dye Acid Red B(ARB) was experimentally investigated using this method. It was found that the manganese mineral could catalyze the electrochemical process dramatically. The TOC removal percentage of electrochemical treatment catalyzed by manganese mineral was 43.6% while the TOC removal percentage of the process using the manganese mineral alone and using the electrolysis alone were 9.3% and 20.8%, respectively. Moreover, it was found that combined electroxidation with electro-assisted coagulation process could more effectively eliminate ARB. After a period of 180 min electrooxidation and 300 min electroreduction, almost 66.9% of TOC was removed, and the dissolved Mn^2+. could be effectivly removed. The effects of the order of oxidation and reduction, the proper ratio electrooxidation/reduction time, and current density on the removal efficiency were investigated in detail. In addition, a proposed mechanism of manganese-mineral-catalyzed electrooxidation-reduction process was discussed in this paper.
基金
TheN ationalScienceFundforD istinguishedY oungScholars(N o.50225824)