期刊文献+

双圆柱绕流诱发振动的数值模拟(Part I横向振动) 被引量:9

Numerical simulation of flow-induced vibration on two circular cylinders in a cross-flow(Part Ⅰ: transverse y-motion)
下载PDF
导出
摘要 采用任意拉格朗日-欧拉(ALE)方法数值模拟圆柱在尾流中的流体诱发振动特性。重点分析了圆柱的动力学响应特性,包括升阻力、位移振幅、拍和锁定等现象;另外也详细分析了圆柱的尾涡结构。研究结果表明,在串列下,大质量比时,圆柱的振动会受到抑制,小质量比时,圆柱的振动则会被放大;较之孤立柱的情形,圆柱共振发生在低于且接近于1.0的频率比带内且不易随质量比的变化发生偏移;小质量比下圆柱振幅及共振带都要比大质量比下的大得多;不同频率比和间距比下,圆柱的动力学特性存在明显的差异,相应的涡脱落模态呈现出2P、P+S和2S模态甚至是2P+S模态,各种模态之间互相竞争促进流固耦合的不断变化发展,导致涡间距和涡街宽度的变化。 Flow-induced vibration on a circular cyilnder in a wake has been studied by numerical solutions using Arbitrary Lagrangian-Eulerian(ALE) method. One of the emphases was on the dynamic responses of the circular cylinder including forces, amplitude of displacement, beating and lock-in phenomena. Another emphasis was on the vortex structures in the wake of the circular cylinder. The presented results show that (a) in the tandem arrangement, flow-induced vibration of the circular cylinder'is greatly suppressed when the mass ratio is high while amplified When the mass ratio is low, (b) the resonance band of the cylinder not shifted with the variation of the mass ratio occurs at the frequency ratios which are lower than unity but close through the comparison with that of an isolated cylinder, (c) the amplitude and resonance band of the cylinder response are much larger at low mass ratio and (d) distinct features of the dynamics response on the cylinder are investigated including corresponding vortex patterns which appear many typical modes, 2P, P + S and 2S, even 2P + S mode with various frequency ratios and spacing ratios. These various modes play a drastic competition to advance the interaction between the fluid and structure, thus leading the changes of the spacing separation between vortices and the width of the vortex street.
出处 《空气动力学学报》 CSCD 北大核心 2005年第4期442-448,共7页 Acta Aerodynamica Sinica
基金 国家自然科学基金资助项目(10272094)
关键词 双圆柱绕流 ALE 流体诱发振动 动力学响应特性 涡模态 flow over two circular cylinders ALE flow-induced vibration dynamic response vortex mode
  • 相关文献

参考文献12

  • 1WEI R,SEKING A,SHINUAR M.Numerical analysis of 2D vortex-induced oscillation of a circular cylinder[J].International Journal for Numerical Method in Fluids.1995,21(3):993-1005.
  • 2ZHOU C Y,SO R M C,LAM K.Vortex-induced vibrations of an elastic circular cylinder[J].Journal of Fluids and Structures.1999,13:165-189.
  • 3李广望,任安禄,陈文曲.ALE方法求解圆柱的涡致振动[J].空气动力学学报,2004,22(3):283-288. 被引量:16
  • 4ZDRAVKOVICH M M.Review if flow interference between two circular cylinders in various arrangements[J].ASME Journal of Fluids Engineering.1977,99:618-633.
  • 5CHEN S S.A review of flow-induced vibration of two circular cylinders in cross-flow[J].ASME Journal of Pressure Vessel Technology.1986,108:382-393.
  • 6ZDRAVKOVICH M M.Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements[J].Journal of Wind Engineering and Industrial Aerodynamics.1988,28:183-200.
  • 7BRIKA D,LANEVILLE A.The flow interaction between a stationary cylinder and a downstream flexible cylinder[J].Journal of Fluids and Structures.1999,13:579-606.
  • 8LAM K M,TO A P.Interference effect of an upstream larger cylinder on the lock-in vibration of a flexibly mounted circular cylinder[J].Journal of Fluids and Structures.2003,17:1059-1078.
  • 9KHALAK A,WILLIAMSON C H K.Motions,forces and mode transitions in vortex-induced vibrations at low mass-damping[J].Journal of Fluids and Structures.1999,13:813-851.
  • 10GRIFFIN O M.Vortex-induced vibrations of marine structures in uniform and sheared currents [R].NSF Workshop on Riser Dynamics,University of Michigan,1992.

二级参考文献10

  • 1ANAGNOSTOPOULOS P, BEARMAN P W. Response characteristics of a vortex-excited cylinder at low Reynolds numbers[J]. J. of Fluids and Structures, 1992, 6:39-50.
  • 2FEIREISEN J M, MONTGOMERY M D & FLEETER S. Unsteady aerodynamic forcing functions:a comparison between linear theory and experiment[J]. J. of Turbomachinery,1994, 116: 676-685.
  • 3WEST G S & APELT C J. Fluctuating lift and drag forces on finite lengths of a circular cylinder in the subcritical Reynolds number range[J]. J. of Fluids and Structures, 1997, 11: 135-158.
  • 4KOOPMANN G H. The vortex wakes of vibrating cylinders at low Reynolds numbers[J]. J. of Fluid Mechanics, 1967, 28, (3): 501-512.
  • 5GRIFFIN O M & VOTAW C W. The vortex street in the wake of a vibrating cylinder[J]. J. of Fluid Mechanics, 1972, 51: 31-48.
  • 6WEI R, SEKINE A & SHIMURA M. Numeircal analysis of 2D vortex-induced oscillations of a circular cylinder[J]. International Journal for Numerical Methods in Fluids, 1995, 21: 993-1005.
  • 7KHALAK A & WILLIAMSON C H K. Dynamics of a hydro-elastic cylinder with very low mass anddamping[J]. J. of Fluids and Structures, 1996, 10: 455-472.
  • 8ZHOU C Y, SO R M C & LAM K. Vortex-induced vibrations of an elastic circular cylinder[J]. J. of Fluids and Structures, 1999, 13: 165-189.
  • 9HIRT C W, AMSDEN A A & COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. J. Comput. Phys., 1974, 14: 227-253.
  • 10BRAZA M, CHASSAING P & MINH H Ha. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J]. J. of Fluid Mechanics, 1986, 165:79-130.

共引文献15

同被引文献76

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部