期刊文献+

关于耦合神经元活动时的能量原理 被引量:3

ON ENERGY PRINCIPLE OF COUPLE NEURON ACTIVITIES
下载PDF
导出
摘要 最近美国耶鲁大学的神经科学家们用实验数据表明,哺乳动物大脑皮层中神经信号的传递是一个代价昂贵的能量支出过程,而神经信号的编码是与能量代谢紧密地耦合在一起的,但是到目前为止还无法定量给出神经元活动时的能量函数。在这篇文章中,能量原理被用于神经活动和神经信息处理机制的研究,在电生理实验数据的基础上,建立神经元活动的用能量函数表示的运动方程。结果表明用能量函数表达耦合神经元的阈下电活动和动作电位,数值计算结果与用Hodgkin-Huxley方程所描述的动作电位一致。从而有可能依据能量原理从脑信息处理的角度揭示和理解大脑神经网络系统的信息表现规律。 Experimental data from neuroscientists at Yale University recently proved that signal transmission in the mammalian cerebral cortex is an expensive process that has energetic demand tightly coupled to the information encoding by the neuronal ensemble. As yet, however, energy function on neuronal activity is not given quantitatively. In this paper, Hamiltonian energetic function is employed to research neural activity and mechanism of neural information processing, and motion equation of neural activity described by means of energy function is established on the basis of experimental data of electrophysiology. Here we show that Hamiltonian energetic function can be employed to express electronic activity of couple neurons at sub-threshold value and action potential of couple neurons at supra-threshold stimulation. The exact solutions of the motion equation agree with action potential described by means of Hodgkin-Huxley equation. Hence, the motion equations unify and extend both mathematical and neurobiological perspectives. Accordingly, it is possible to indicate a new road on the basis of brain information processing for comprehending role of information encoding of neural-network system of brain.
出处 《生物物理学报》 CAS CSCD 北大核心 2005年第6期436-442,共7页 Acta Biophysica Sinica
基金 国家自然科学基金项目(30270339)
关键词 耦合神经元集群 神经元电活动 哈密尔顿能量函数 神经信息处理 Coupling neuronal population Electronic activity of neurons Hamiltonian energy function Neural information processing
  • 相关文献

参考文献23

  • 1Winfree AT. The geometry of biological time. Berlin: Springer, 1980.
  • 2Kuramoto Y. Chemical oscillations, waves, and turbulence. Berlin: Springer, 1984.
  • 3Tass PA. Phase resetting in medicine and biology. Berlin: Springer, 1999.
  • 4Haken H. Principle of brain functioning, a synergetic approach to brain activity, behavior and cognition. Berlin: Springer, 1996.
  • 5Freeman WJ. Neurodynamics. London: Springer, 2000.
  • 6Wang RB, Zhang ZK. Nonlinear stochastic models of neurons activities. Neurocomputing, 2003,51C:401-411.
  • 7Wang RB, Chen H. Analysis of dynamics of the phase resetting on the set of the population of neurons. International Journal of Nonlinear Science and Numerical Simulation, 2003,4(3):203-208.
  • 8Wang RB. On the nonlinear stochastic evolution model possessing the populations of neurons of different phase. Proceedings of International conference on neural networks and signal processing (IEEE 2003), 2003,1:139-143.
  • 9Wang RB, Hayashi H, Zhang ZK. A stochastic nonlinear evolution model of neuron activity with random amplitude. Proceedings of 9th International Conference on Neural information Processing (ICONIP), 2002,5:2497-2501.
  • 10Wang RB, Yu W. A stochastic nonlinear evolution model and dynamic neural coding on spontaneous behavior of large-scale neuronal population. In: Wang LP, Chen K, Ong YS (Ed). Advances in Natural Computation Part 1. Berlin: Springer, 2005. 490-498.

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部