期刊文献+

应用生长、分级的自组织映射模型进行意识任务分类 被引量:1

GROWING HIERARCHICAL SELF-ORGANIZING MAP MODELS FOR MENTAL TASK CLASSIFICATION
下载PDF
导出
摘要 提出一种使用生长、分级的自组织映射(growinghierarchicalself-organizingmap,GHSOM)模型进行基于EEG信号的意识任务分类来实现脑机接口技术的方法。GHSOM模型是自组织映射(self-organizingmap,SOM)的一种变体,由多层的SOM组成,具有一定的分级结构,能够表达数据中不同层次的信息。同时研究了使用平均量化误差(meanquantizationerror,mqe)和量化误差(quantizationerror,qe)两种方法实现的GHSOM模型对意识任务分类的作用。结果表明,GHSOM模型对于意识任务的可分性能够提供可视化的信息,并且发现使用量化误差方法实现的GHSOM模型提供较多的数据信息和较高的分类精度。使用GHSOM模型进行了5类意识任务的分类,平均分类精度可达80%。 The growing hierarchical self-organizing map (GHSOM) model was proposed to apply to performing mental tasks classification in EEG for Brain-Computer Interface. The GHSOM model is a variant of SOM, and consists of many layers of SOMs, which form the hierarchical architecture. The hierarchical structure hid in data can be expressed by GHSOM model. The effectiveness of GHSOM models implemented using both the mean quantization error (mqe) and quantization error (qe) methods for mental tasks classification was investigated. The results indicated that GHSOM models provided visual information about the separability of different mental tasks, and the GHSOM model using quantization error method provided more detailed information about data and obtained high classification accuracy. About 80% of the average classification accuracy for five mental tasks classifications was achieved by using the GHSOM model.
出处 《生物物理学报》 CAS CSCD 北大核心 2005年第6期443-448,共6页 Acta Biophysica Sinica
基金 国家自然科学基金项目(60271025 30370395) 陕西省科技计划项目(2003K10-G24)
关键词 脑机接口 脑电图 GHSOM 意识任务分类 Brain-computer interface EEG GHSOM Mental task classification
  • 相关文献

参考文献8

  • 1Wolpaw JR, Birbaumer N, McFarland D J, Pfurtscheller G,Vaughan TM. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 2002,113(6):767-791.
  • 2Rauber A, Merkl D, Dittenbach M. The growing hierarchicaical forganizing map: exploratory analysis of high-dimensional data. IEEE Trans Neural Networks, 2002,13(6):1331-1341.
  • 3Chan A, Pampalk E. Growing hierarchical self-organising map (GHSOM) toolbox: visualisations and enhancements. Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'02), 2002:2537-2541.
  • 4Keim ZA, Aunon JI. A new mode of communication between man and his surroundings. IEEE Trans Biomed Eng,1990,37(12):1209-1214.
  • 5Girton DG, Kamiya J. A simple on-line technique for removing eye movement artifacts from the EEG. Electroencephalogr Clin Neurophysiol, 1973,34(2):212-217.
  • 6Croft R, Barry R. Removal of ocular artifact from the EEG:a review. Neurophysiologie Clinique/Clinical Neurophysiology,2000,30(1):5-19.
  • 7Fitzgibbon S, Pope K, Mackenzie L, Clark C, Wiloughby J.Cognitive tasks augment gamma EEG power. Clinical Neurophysiology, 2004,115 (8): 1802-1809.
  • 8Garrett D, Peterson DA, Anderson CW, Thaut MH. Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. IEEE Trans Neural Syst Rehab Eng, 2003,11(2):141-144.

同被引文献8

  • 1师黎,杨岑玉,张金盈.小波变换在心电图ST段识别中的应用[J].郑州大学学报(医学版),2006,41(2):275-277. 被引量:6
  • 2Gu-Young Jeong, et al.. Development of Portable ECG Measure- ment Device and PC Software for Automatic ST Analysis. IEEE Transactions on Biomedical Engineering[ C ]. International Confer- ence on Control, Automation and Systems , Gyeonggi-do, Korea, Oct. 27-30, 2010:1171-174.
  • 3Suma CBulusu, et al.. Transient ST-Segment Episode Detection for ECG Beat Classification[ C ]. 2011 IEEE Life Science Systems and Applications Workshop ( LiSSA ) , Bethesda, MD April. 7 - 8 2011 : 121-24.
  • 4MTeshnehlab, H A Moghaddam. lschemia Detection via ECG u- sing ANFIS [ C ]. 30th Annual International IEEE EMBS Confer- ence, Vancouver, British Columbia, Canada, August. 20-24, 2008 : 1163-1166.
  • 5Gu "Young .Ieong, Kee'HoYu. Morphological Classification of ST segment using Reference STs Set [ C ]. IEEE Proceedings of the 29th Annual International Conference of the IEEE EMBS Cit6 In- temationale, Lyon, France, August 23-26, 2007:636-639.
  • 6万红,汪显明,李光廷.冠心病心电信号ST段的波形形态分类[J].计算机工程与应用,2009,45(28):205-206. 被引量:1
  • 7汪振兴,张思杰,曾孝平.心电信号ST段形态识别算法[J].计算机应用,2011,31(10):2811-2813. 被引量:8
  • 8熊敏,刘雄飞.基于多孔算法的心电图QRS波检测[J].计算机仿真,2011,28(12):244-248. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部