摘要
设E为实一致光滑Banach空间,A:D(A)(?)E→2E为一增生映射且满足值域条件,并且A-1(0)≠(?),对(?)z∈E,序列{xn}(?)D(A)定义为xn+1=xn-λn(un+θn(xn-z)+en)其中un∈Axn,(?)n≥1.这里{λn},{θn}为满足一定条件的正实数列,假如{un}是有界的,则xn→x∈A-1(0).本质上将Claidume和Zegeye于20C13年提出的关于增生映射零点的精确格式推广为带误差项的形式.
Let E be a real uniformly smooth Banach space, A .D (A)真包含E→2^E be accretive mapping and satifying the range condition, and A^-1(0)≠Ф对任意z∈E The sequence{xn}真包含D(A)is defined as follow xn+1=xn-λn(un+θn(xn-z)+en) for un∈Axn,任意n≥1.where{λn},{θn} are real non-negative sequences satisfying some condition. We suppose that { un} is bounded ,then xn→x^*∈A^-1(0) The accurate iteration scheme for zero points of accretive introduced by Chidume and Zegeye in 2003 has been essentially extended to the case of iteration scheme with errors.
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2005年第6期567-570,共4页
Journal of Hebei University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471033)
河北省自然科学基金资助项目(102129)
关键词
增生映射
伪压缩映射
迭代格式
一致光滑Banach
accretive mapping
pseudocontractive maps
iteration scheme
uniformly smooth Banach space