期刊文献+

完备度量空间上图定向自相似测度的局部维数

The Pointwise Dimension of Graph-directed Self-similar Measures in Complete Metric Spaces
下载PDF
导出
摘要 运用遍历理论,讨论了完备度量空间上图定向自相似测度的局部维数,得出了dμ(x)=∑u∈V∑v∈Ve∑∈Euvλuρepvlogρe∑u∈V∑v∈Ve∑∈Euvλuρepvlogre关于测度μ对几乎所有的x∈K成立的结论. In this paper, the pointwise dimension of graph-directed self-similar measures in complete metric spaces is investigated by Birkhoff ergodic theorem, and it comes to a conclusion that dμ(x)=∑u∈V ∑v∈V ∑e∈uvλuρePulog ρe/∑u∈V ∑v∈V ∑e∈uvλuρePulog γe about μ for almost every x∈K.
作者 陈汉平
出处 《徐州师范大学学报(自然科学版)》 CAS 2005年第4期22-27,共6页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 江苏省教育厅高校自然科学基金资助项目(04KJB110152)
关键词 图定向自相似集 不变概率测度 局部维数 graph-directed self-similar set invariant probability measure pointwise dimension
  • 相关文献

参考文献5

  • 1Wang Jingling.The open set condition for the graph directed self-similar sets[J].Random Comput Dynam,1997,5(4):283.
  • 2Schief A.Separation properties of self-similar sets[J].Proc Amer Math Soc,1994,122(1):111.
  • 3Geronimo J S,Hardin D P.An exact formula for the measure dimension associated with a class of piecewise linear maps[J].Constr Apprax,1989,5(1):89.
  • 4Strichartz R S.Self-similar measure and their Fourier transforms I[J].Indiana Uni Math J,1990,39(3):797.
  • 5Chen Ercai,Tassilo Kupper.The pointwise dimension of self-similar measures in complete metric spaces[J].Chaos Solitons Fractals,2004,22(3):641.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部