摘要
运用遍历理论,讨论了完备度量空间上图定向自相似测度的局部维数,得出了dμ(x)=∑u∈V∑v∈Ve∑∈Euvλuρepvlogρe∑u∈V∑v∈Ve∑∈Euvλuρepvlogre关于测度μ对几乎所有的x∈K成立的结论.
In this paper, the pointwise dimension of graph-directed self-similar measures in complete metric spaces is investigated by Birkhoff ergodic theorem, and it comes to a conclusion that dμ(x)=∑u∈V ∑v∈V ∑e∈uvλuρePulog ρe/∑u∈V ∑v∈V ∑e∈uvλuρePulog γe about μ for almost every x∈K.
出处
《徐州师范大学学报(自然科学版)》
CAS
2005年第4期22-27,共6页
Journal of Xuzhou Normal University(Natural Science Edition)
基金
江苏省教育厅高校自然科学基金资助项目(04KJB110152)
关键词
图定向自相似集
不变概率测度
局部维数
graph-directed self-similar set
invariant probability measure
pointwise dimension