期刊文献+

质量四极矩引力场中的轨道动力学

Orbital Dynamics of the Gravitional Field with the Mass Quadrupole Moment
下载PDF
导出
摘要 通过等效势能图,并利用相平面分析的方法,研究了质量四极矩引力场中粒子轨道的性质.讨论了粒子的能量、角动量和质量四极矩对于粒子轨道的影响. By means of the particles in the gravitational field mentum of particles and the mass effective potentials and with the phase-plane method, the properities of the orbits of with mass quadrupole moment are studied. The effects of the energy, the angular moquadrupole moment on the orbits of particles are discussed.
作者 曾艺 吕君丽
出处 《湖南师范大学自然科学学报》 EI CAS 北大核心 2005年第4期41-44,共4页 Journal of Natural Science of Hunan Normal University
基金 湖南省教育厅科研基金资助项目(03C230)
关键词 引力场 四极矩 相平面 轨道 稳定性 gravitational field quadrupole moment phrase plane orbit stability
  • 相关文献

参考文献6

  • 1陈菊华,王永久.极端荷电黑洞引力场中的轨道动力学[J].物理学报,2001,50(10):1833-1836. 被引量:2
  • 2WALD R. General Relativity [ M ]. Chicago : University of Chicago, 1984.
  • 3KOMPANEYETS A S. Theoretical Mechanics[ M]. New York: Dover, 1962.
  • 4王永久.引力论和宇宙论[M].长沙:湖南师范大学出版社,2003..
  • 5CHANDRASEKHAR S.The mathematical theory of black holes[M].New York:Oxford University,1983.
  • 6CRUZ N,OLIVARES M,VILLANUEVA J R.The geodesic stntcture of the schwarzschild anti-de sitter black hole[J].Class Quant Grav.2005,22:1167-1190.

二级参考文献12

  • 1[1]R. Wald, General Relativity (University of Chicago, 1984), pp.139- 143.
  • 2[2]C. Misner, K. Thorne, J. Wheeler, Gravitation (Freeman, San Francisco, 1973), pp.659 - 670.
  • 3[3]B. Davies, Am. J. Phys., 51(1983), 909; Am.J. Phys., 53(1985) 374; Am.J.Phys., 56(1988), 1097.
  • 4[4]A.P. Arya, Introduction to Classical Mechanics (Prentice-Hall,Engle-wood Cliffs, NJ, 1990), pp.222-252.
  • 5[5]H.C. Corben, P. Stehle, Classical Mechanics (Dover, Minecola,NY, 1994), 2nd ed., pp.90- 100.
  • 6[6]G. Fowles, G. Cassiday, Classical Dynamics of Particles and Symstems(Harcourt-Brace, Orlando, FL, 1993), 5th ed., pp. 191-216.
  • 7[7]H. Goldstei, Classical Mechanics (Addision-Wesley, Reading,MA, 1980), 2nd ed., pp.94- 102.
  • 8[8]A.S. Kompaneyets, Theoretical Mechanics (Dover, New York,1962), 2nd ed., pp.41 -48.
  • 9[9]J. Marion and S. Thornton, Analytical Mechanics (Harcourt-Brace,Orlando, FL., 1995), 4th ed., pp.291 - 321.
  • 10[10]A. Roy, Orbital Dynamics (Hilger, Redcliffe Way, Bristol 1982),2nd ed., pp.69- 100.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部