期刊文献+

剪切锁闭的本质及解除方法 被引量:3

THE ESSENCE AND ELIMINATION OF SHEAR LOCKING
下载PDF
导出
摘要 C_0连续的弯曲单元得到了广泛应用,一方面由于计算较厚结构(如夹层结构)的需要,一方面由于在构造C_1连续单元时遇到困难。但C_0连续单元有“剪切锁团”问题,即当计算薄的结构时,剪切应变能愈来愈大,结构过分刚硬,位移很小。“减缩积分” The paper tries to analyse the causation of shear locking for co-continuity bending elements, pointing out that the gross error of equilibrium in the elements is essential. Bulb functions and high order terms have been added to the shape functions to improve the equilibrium relationship but the total number of element D. O. F. was not increased. Numerical examples show that the shear locking is relieved. Hourglass'can be avoided because reduced integration is no longer needed. Also, accuracy deterioration when computing thick plates is removed.
出处 《航空学报》 EI CAS CSCD 北大核心 1989年第1期A074-A078,共5页 Acta Aeronautica et Astronautica Sinica
关键词 剪切锁闭 shear locking, essence, elimination.
  • 相关文献

参考文献1

  • 1诸德超,结构分析中的有限元素法,1981年

同被引文献37

  • 1杨小兰,刘极峰,陈旋.基于ANSYS的有限元法网格划分浅析[J].煤矿机械,2005,26(1):38-39. 被引量:35
  • 2龙驭球,赵俊卿.厚板低阶广义协调矩形元[J].清华大学学报(自然科学版),1993,33(2):7-16. 被引量:2
  • 3孙建东,张伟星.无单元法在平板弯曲问题中的应用[J].青岛理工大学学报,2005,26(6):134-139. 被引量:10
  • 4Suri M. Analytic and computational assessment of loc- king in the hp-finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 1996,133:347-371.
  • 5Zienkiewicz O C,Taylor R L,Too J M. Reduced inte- gration techniques in general analysis of plates shells[J].International Journal for Numerical Meth- ods in Engineering, 1971,3 : 275-290.
  • 6Schwarze M,Reese S. A reduced integration solid- shell finite element based on the EAS and the ANS concept-Large deformation problem[J].International Journal for Numerical Methods in Engineering, 2011, 85(3) :289-329.
  • 7Taylor R L, Auricchio F. Linked interpolation for Re- issner-Mindlin plate elements:Part II a simple triangle[J].International Journal for Numerical Methods in Engineering, 1993,36 ~3057 3066.
  • 8Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977,82 (12) : 1013-1024.
  • 9Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994,37 :229 256.
  • 10Krysl P,Belytschko T. Analysis of thin shells by the element-free Galerkin method[-J~. Computer Methods in Applied Mechanics and Engineering, 1996, 33: 3057 3080.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部