摘要
研究了in(φiaj(I))与I的分次Betti数间的关系;I为单项式理想时,存在整数序列(i1,j1),…,(ir,jr)满足ik<jk,k=1,…,r,使得in(φiarjr(…in(φai1j1(I))…)为强稳定理想,且in(φiarjr(…in(iaφ1j1(I))…)是唯一的.
We study the relationship of the graded Betti numbers between in( ψij^α ( I ) )and I, When I is a monomial ideal, there exists a sequence of pairs of integers( i 1, J 1 ) ,…, ( ir, jr ) with ik 〈 jk for k = 1 ,…, r, such that in( ψrrjr^α (…in(ψi1j1^α ( I ) )… ) ) is strongly stable, and we show that in( ψirjr^α(…in( ψi1j1^α ( I ) )… ) ) is unique.
出处
《苏州大学学报(自然科学版)》
CAS
2005年第4期17-23,共7页
Journal of Soochow University(Natural Science Edition)
基金
SupportedbyNationalScienceFoundationofChina(10371085)