摘要
证明了如下结果:设f(z)和g(z)是非常数的整函数,ai(z)(i=1,2,3,4)是f(z)和g(z)的四个判别的公共小函数.如果f(z)和g(z)CM分担a1(z)、IM分担a2(z),a3(z),a4(z),且τ(a2)>0,则f(z)≡g(z)
The following theorem was proved: Suppose that f(z) and g(z) are nonconstant entire functions, and that a i(z) (i=1,2,3,4) are distinct common small functions related to f(z) and g(z) . If f(z) and g(z) share a 1(z) CM, and share a 2(z),a 3(z),a 4(z) IM, and τ(a 2) >0,then f(z)≡g(z) .
出处
《南京师大学报(自然科学版)》
CAS
CSCD
1996年第2期19-22,共4页
Journal of Nanjing Normal University(Natural Science Edition)
基金
江苏省教育委员会自然科学基金