摘要
定义了(m,n)-树的次集和次序列的概念,并且定义一个集D是(m,n)-可实现的如果D是某个(m,n)-树的次集.证明了:如果D是具有最大元素d的数集,则对某个k’,k’≥(d-1)δ是(k’-δ,k’)-可实现的当且仅当D有一个实现是一个具有d个极大单形的(dδ-δ-1,dδ-1)-树,并且对任意k≥(d-1)δ,D也是(k-δ。
The degree set and degree sequence of an (m,n)-tree are difined. An integer set D is said to be (m,n)-realized if D is precisely the degree set of an (m,n)-tree. It is proved that if d is the most number of an integer set D,then for some k'≥ (d-1)δ,D is (k' -δ,k' )-realiZed if and only if D is (dδ-δ- 1,dδ- 1)-realized by a (dδ-δ- 1,dδ- 1)-tree with d maximum simplexes and for any k≥ (d - 1 )δ, D is also (k - δ, k )-realized,where δ=n-m.
出处
《山东大学学报(自然科学版)》
CSCD
1996年第1期21-27,共7页
Journal of Shandong University(Natural Science Edition)