期刊文献+

基于支持说话人权重的快速说话人自适应算法

A Rapid Speaker Adaptation Based on Support Speaker Weighting
下载PDF
导出
摘要 针对语音识别系统中快速说话人自适应问题,提出了一种支持说话人权重算法.该算法通过支持说话人的计算实现了说话人选择与自适应参数的降维,减少了自适应时的存储量,有效提高了自适应数据较少时的性能.有监督自适应的实验结果表明,在仅有一句自适应语句的情况下系统误识率相对非特定人(SI)系统下降了5.82%,明显优于其他快速自适应算法. A novel model-based speaker adaptation algorithm, support speaker weighting (SSW), was proposed for rapid speaker adaptation in speech recognition systems. It realizes the specific speaker selection and dimensionality reduction by computing the support speaker subsets from many reference speakers. This method yields major improvements in performance for tiny amounts of adaptation data while greatly reducing the memory requirement. The experiments on the supervised adaptation demonstrate that the relative error rate reduction of 5.82% is achieved when only one adaptation sentence is available. In comparison with other rapid speaker adaptation algorithms, SSW is more effective.
作者 蔡铁 朱杰
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第12期1997-2001,共5页 Journal of Shanghai Jiaotong University
基金 上海市科学技术委员会基础研究基金项目(01JC14033)
关键词 语音识别 说话人自适应 支持向量机 支持说话人权重 speech recognition speaker adaptation support vector machine support speaker weighting
  • 相关文献

参考文献9

  • 1Gauvain J L,Lee C H.Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains[J].IEEE Trans on Speech and Audio Processing,1994,2(2):291-298.
  • 2李虎生,刘加,刘润生.语音识别说话人自适应研究现状及发展趋势[J].电子学报,2003,31(1):103-108. 被引量:32
  • 3Leggetter C J,Woodland P C.Maximum likelihood linear regression for speaker adaptation of continuous-density hidden markov models[J].Computer Speech and Language,1995,9(2):171-185.
  • 4Hazen T.The use of speaker correlation information for automatic speech recognition[D].Combridge:Massachusetts Institute of Technology,1998.
  • 5Kuhn R,Junqua J C,Nguyen P,et al.Rapid speaker adaptation in eigenvoice space[J].IEEE Trans on Speech and Audio Processing,2000,8(6):695-707.
  • 6吕萍,吴及,王作英,陆大.连续语音识别中的说话人快速自适应技术[J].清华大学学报(自然科学版),2002,42(7):977-980. 被引量:4
  • 7Padmanabhan M,Bahl L,Nahamoo D,et al.Speaker clustering and transformation for speaker adaptation in speech recognition systems[J].IEEE Trans on Speech and Audio Processing,1998,6(1):71-77.
  • 8Huang C,Chen T,Chang E.Speaker selection training for large vocabulary continuous speech recognition[A].Proceedings of ICASSP2002[C].Orlando,FL:[s.n.],2002,1(1):I-609-I-612.
  • 9Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,1995.

二级参考文献3

  • 1王作英.基于段长分布的HMM语音识别模型.第二届全国汉字语音识别会议[M].庐山,1989..
  • 2张昊天.[D].北京:清华大学电子工程系,2000.
  • 3李虎生,杨明杰,刘润生.汉语数码语音识别自适应算法[J].电路与系统学报,1999,4(2):1-6. 被引量:4

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部