摘要
著名的Hermite-Hadamard不等式可表述为:设f:[a,b]→R凸函数,则有f(a 2+b)b-1a∫abf(t)dtf(a)+f(b)2.本文给出这个不等式中的f(a 2+b)的最佳下界和(b-a)-1∫abf(t)dt的最佳上界.作为应用,获得了一些涉及两个正数a与b的平均值的不等式.
The Hermite-Hadamard Inequality says that: Let f be a convex function on [a,b] , and then f((a+b)/2)≤1/(b-a)∫a^bf(t)dt ≤(f(a)+f(b))/2. In this paper, under the advisable hyoltheses, we shall give the best lowerbound of f( (a + b)/2) and the best upper bound of (b - a)^ -1∫a^bf(t)dt. As applications ,several inequalities involving the so-called extended mean values are obtained.
出处
《成都大学学报(自然科学版)》
2005年第4期241-247,共7页
Journal of Chengdu University(Natural Science Edition)