期刊文献+

Hermite-Hadmard不等式的扩张(英文) 被引量:2

Several Extensions of Hermite-Hadmard Inequality
下载PDF
导出
摘要 著名的Hermite-Hadamard不等式可表述为:设f:[a,b]→R凸函数,则有f(a 2+b)b-1a∫abf(t)dtf(a)+f(b)2.本文给出这个不等式中的f(a 2+b)的最佳下界和(b-a)-1∫abf(t)dt的最佳上界.作为应用,获得了一些涉及两个正数a与b的平均值的不等式. The Hermite-Hadamard Inequality says that: Let f be a convex function on [a,b] , and then f((a+b)/2)≤1/(b-a)∫a^bf(t)dt ≤(f(a)+f(b))/2. In this paper, under the advisable hyoltheses, we shall give the best lowerbound of f( (a + b)/2) and the best upper bound of (b - a)^ -1∫a^bf(t)dt. As applications ,several inequalities involving the so-called extended mean values are obtained.
出处 《成都大学学报(自然科学版)》 2005年第4期241-247,共7页 Journal of Chengdu University(Natural Science Edition)
关键词 凸函数 HERMITE-HADAMARD不等式 平均 convex function Hermite-Hadamard Inequality mean
  • 相关文献

参考文献10

  • 1Mitrinovic D S, Pecaric J E, Fink A M. New and Classical and new in equalities in analysis[ M]. Dordrecht, Boston,London- Kluwer Academic Publishers, 1993.
  • 2Bullen P S, Mitrinovic D S, Vasic P M. Means and their inequalities[ M]. London: D. Reidel Publishing Company,1998.
  • 3Kuang J C. Applied Inequalities [ M ]. Changsha: Hunan Education Press ,1993. (in Chinese).
  • 4Yang Z H. Inequalities for power means of cinvex functions[ J ]. Pratt. and Theory, 1990, ( 1 ) :23 - 27. ( in Chinese).
  • 5Qi Feng, Further generalizations of inequalities for an integral [ J ], Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.Fiz,1997, (8) :79 -83.
  • 6Dragonir S S, Agarwal R P. Two new mappings associated with Hadamare's inepualities for convex functions [ J ]. Appl.Math. Lett, 1998,11 (3) :33 -38.
  • 7Wang C L, Wang X H. On extension of Hadamard inequalities for convex functions[ J]. Chin. Ann,of Math, 1982,3 (5) :567 - 570.
  • 8Sandor J. Some integral inequalities [ J ], EI. Math. 1988,43(6) : 177 - 180.
  • 9Alzer H. A note on Hadamard's inequal ities [ J ]. C. R.Math Rep. Acad. Sci(Canada). 1989,11(6) :255 -258.
  • 10Wen J J. An chain of inequalities for differentiable functions[ J]. J. Chengdu Univ. (Natur. Sci) ,1991,10(2) :46 -51.

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部