摘要
使用基本的与已知的不等式,将田彦武的一类涉及参数的分式不等式推广为更为一般情形与别的情形.例如,设ai>0(i=1,2,…,n),n 2,an+1=a1,an+2=a2,∑in=1api/2=1,且p 2,μ>0,λ>0,则有,∑ni=1aipλapi/+21+μapi+2>(1-4λ)-4μ,(ⅰ),如果在上述假设下还有0<a1 a2…an,那么,i∑=n1λapi+/21+aμipapi/+21api+/224-λ-μ4,(ⅱ).
Using some fundamental and given inequalities, several inequalities of fractional expressions in- volving parameters, which are due to Tian Yanwu, are generalized as more general cases and others. For example, if,ai〉0(i=1,2,…,n),n≥2,an+1=a1,an+2=a2,∑i=1^nai^p/2=1 and p≥2,μ〉0,λ〉0,then ∑↓i=1↑nai^p/(λa(i+1)^(p/2)+μai^p+2)〉(1-λ/4)-μ/4,(i),Under the above hypothesis, if 0〈a1≤a2≤…≤an we have ∑↓i=1↑nai^p/(λa(i+1)^p/2+μa(i+1)^p/2a(i+2)^p/2)≥(4-λ-μ)/4,(ii).
出处
《成都大学学报(自然科学版)》
2005年第4期248-249,268,共3页
Journal of Chengdu University(Natural Science Edition)
关键词
不等式
分式
参数
基本不等式
Inequality
fractional expression
parameter
fundamental inequality