摘要
建立了一个新的SQP算法,提出了一阶可行条件这一新概念.对已有SQP型算法进行改进,减少计算工作量,证明了算法具有全局收敛及超线性收敛性.数值实验表明算法是有效的.
In this paper, we present a new SQP algorithm, and a new idea called first-order feasible condition, by which the traditional SQP type method is improved, and computational effort is reduced. Theoretical analysis shows that the algorithm is global and superlinear convergent under some suitable conditions. The numerical results show that the method in this paper is effective.
出处
《系统科学与数学》
CSCD
北大核心
2005年第6期669-679,共11页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10261001
10361003
10501009)资助课题.
关键词
不等式约束优化
SQP算法
可行方向
全局收敛
超线性收敛
Inequality constrained optimization, SQP method, feasible direction, global convergence, superlinear convergence.