摘要
Cayley有向图X=Cay(G,S)叫做正规的,如果G的右正则表示R(G)在X的全自同构群Aut(X)中正规,我们定出了交换群上的小度数的非正规的Cayley有向图, 并给出了一个猜想.应用这个结果,给出了pn(n≤2)个点上的度数不超过3的有向对称图的分类,这里p是一个奇素数.
A direced Cayley graph X = Cay(G, S) is called normal for G if the right representation R(G) of G is normal in the full automorphism group Aut(X). In this paper, we determine all non-normal directed Cayley graphs of finite abelian groups with valencies 2 and 3. Using the result, we give a complete classification of connected directed arc-transitive graphs of order p^n(n≤2,p an odd prime) with valency at most 3.
出处
《系统科学与数学》
CSCD
北大核心
2005年第6期700-710,共11页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10371003
10471085)山西省自然科学基金(20051007)教育部重点项目基金(02023)山西省留学回国人员基金([2004]7)资助课题.