期刊文献+

基于SOFM神经网络与判别分析的肝硬化识别方法的研究 被引量:1

Recognition Method of Liver Cirrhosis Based on SOFM Neural Network and Discriminant Analysis
下载PDF
导出
摘要 将SOFM神经网络与医师诊断相结合对腹部MRI进行样本分类,并利用判别 分析方法对肝硬化进行图像识别.应用此方法对随机抽取的40枚腹部MRI图像进行处理,以 7.5%的误判率结果说明了本方法的有效性. The sample classification of abdomen MRI is carried out by the combining method of SOFM Neural network and doctor's diagnosis. Then the liver cirrhosis is recognized based on discriminant analysis. The new technique is applied to recognize 40 abdomen MR images which is randomly abstracted and get the results of 7.5% error rate, which also prove the effectiveness of this new method.
出处 《生物数学学报》 CSCD 北大核心 2005年第4期487-490,共4页 Journal of Biomathematics
基金 辽宁省自然科学基金项目(20042020)
关键词 判别分析 肝硬化 MRI Discriminant analysis Liver cirrhosis MRI
  • 相关文献

参考文献4

  • 1波多野贤治,佐野绫一,段一为,田中克己.「自己化マツブと仕鳐ē螗弗螭蛴盲いWeb文畏诸ビユc 」[J].情Ⅰ理学会文:デタベス,1999,40,No.SIG3(TOD1):47-59.
  • 2骆骋,粟欣,姚彦.自组织神经网络实现无线数字信号识别[J].无线通信技术,2000,9(4):9-13. 被引量:4
  • 3李明春 彭承琳 牟永阁.用自组织神经网络对钙化点分割方法的研究[J].中国医学影像学杂志,2003,11(3):402-404.
  • 4Miyajima H,MALi - xin,Maeda M.Self-organizing NeuralNetworksfor Vector Quantization and Its Application to Image Compression[M].NOLTAXi'an,PRC,2002,865-868.

二级参考文献11

  • 1S.-Z.Hsue,S.S.Soliman.Automaticmodulationclassificationusingzerocrossing[A].IEEProceedings[C],1990,137(6):459-464.
  • 2F.Jondral.Automaticclassificationofhighfrequencysignals[J].SignalProcessing,1985,9(3):177-190.
  • 3Dominguezetal.Ageneralapproachtotheautomaticclassificationofradiocommunicationsignals[J].SignalProcessing,March1991,22(3):239-250.
  • 4F.F.Leidtke.Computersimulationofanautomaticclassificationprocedurefordigitallymodulatedcommunicationsignalswithunkownparameters[J].SignalProcessing,1984,6:311-323.
  • 5J.Aisbett.Automaticmodulationrecognitionusingtime-domainparameters[J].SignalProcessing,October1987,13(3):323-329.
  • 6A.PolydorosandK.Kim.Onthedetectionandclassificationofquadraturedigitalmodulationsinbroad-bandnoise[J].IEEETransactionsonCommunications,August1990,38(8):1199-1211.
  • 7C.HuangandA.Polydoros.LikelihoodmethodsforMPSKmodulationclassification[J].IEEETransactionsonCommunication,February/March/April1995,43(2/3/4):1493-1503.
  • 8S.S.SolimanandS.Hsue.Signalclassificationusingstatisticalmoments[J].IEEETransactionsonCommunications,May1992,40(5):908-915.
  • 9W.Wei,J.Mendel.Anewmaximumlikelihoodformodulationclassification[J].Asilomar-29,1996:1132-1138.
  • 10A.NandiandE.Azzouz.Modulationrecognitionusingartificialneuralnetworks[J].SignalProcessing,1997,56:165-175.

共引文献3

同被引文献17

  • 1高志.SOM神经网络模型在商业银行信用风险评估中的应用研究[J].电脑知识与技术(过刊),2007(14):498-499. 被引量:2
  • 2姜明丽,陈先农.人工神经网络在肌电信号处理中的应用[J].国外医学(生物医学工程分册),2005,28(2):94-97. 被引量:4
  • 3杨占华,杨燕.SOM神经网络算法的研究与进展[J].计算机工程,2006,32(16):201-202. 被引量:78
  • 4杨黎刚,苏宏业,张英,褚健.基于SOM聚类的数据挖掘方法及其应用研究[J].计算机工程与科学,2007,29(8):133-136. 被引量:32
  • 5Kohonen T Self-Organizing Maps[ M]. Berlin-Springer,2001.
  • 6Buche D, Milano M, Koumoutsakos P. Self-organizingmapsformulti-ob- jectiveoptimization [ C ]. proceedings of the bird of a feather work- shops, genetic and evolutionary computation conference, 2002: 152- 155.
  • 7Eisuke K, Shen K, Zhai F. Investigation of self-organizing map for ge- netic algorithm [ J ]. Advances in Engineering Software,201 o,g 1 ( 2 ) : 148-153.
  • 8Salchenberger L, Venta E R, Venta L A. Using neural networks to aid the diagnosis of breast implant rupture [ J ]. Computers & Operations Research,1997,24(5) : 435-444.
  • 9Adam G. Preprocessing and analysis of ECG signals-A self-organizingmaps approach [ J ]. Expert Systems with Applications, 2011,38 (7) : 9008-9013.
  • 10Coppini G, Diciotti S, Valli G. Matching of medical images by self-or- ganizing neural networks [ J ]. Pattern Recognition Letters, 2004,25 (3) :341-353.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部