期刊文献+

涡轮泵故障检测的频段能量比SOM算法

Frequency-band-energy-ration-based SOM Algorithm for Turbopump Fault Detection
下载PDF
导出
摘要 为了解决缺少故障样本情况下的涡轮泵健康状态判别问题,分析了涡轮泵振动信号的频谱,提取了频段能量比作为其故障检测特征,并讨论了自组织映射的竞争学习原理及聚类结果的U-矩阵表示,提出了一种基于频段能量比的自组织映射故障检测算法,并实现了该算法最佳匹配神经元的选择和权重向量的自适应更新。通过某型液体火箭发动机历史试车数据的验证,结果表明,健康涡轮泵数据利用该算法聚类时仅存在一个类别,相邻神经元距离小于0.1;反之,故障涡轮泵数据利用该算法聚类时明显存在两个或多个类别,且相邻神经元的最大距离大于0.1。因此,基于频段能量比的SOM算法能有效地判别涡轮泵的健康状况。 In order to detect the turbopump fault short of fault samples, the spectrums of turhopump vibration signals were analyzed, and the frequency band energy ratio was selected as the fault feature of those signals. After SOM competitive learning theory and U matrix description of clustering results were discussed, the frequency-band-energy-ratio-based SOM algorithm for turbopump fault detection is presented, and the selection of the best matching unit (BMU) and the adaptive upgrade of their weight vectors are also realized in this algorithm. With a liquid rocket engine (IRE) historical test data, this algorithm is validated. These results show that there is only one class when the algorithm is used to healthy turhopump vibratien data, and the distance between the neighboring neuron is less than 0.1 ; while there are two or more classes when the algorithm is used for faulty turhopump vibration data, and the distance between the neighboring neuron is greater than 0.1. Therefore the algorithm can effectively detect the turbopump fault.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2005年第6期93-96,共4页 Journal of National University of Defense Technology
基金 国家863高技术研究发展计划资助项目(2005AA722070) 国家自然科学基金资助项目(50375153)
关键词 液体火箭发动机 涡轮泵 故障检测 自组织映射 频段能量比 liquid rocket engine turhopump fault detection self-organizing mapping frequency band energy ratio
  • 相关文献

参考文献9

  • 1Davidson M,Stephens J.Advanced Health Management System for the Space Shuttle Main Engine[J].AIAA-2004-3912,2004.
  • 2Fiorucci T R,Lakin II D R,Reynolds T D.Advanced Engine Health Management Applications of the SSME Real-time Vibration Monitoring System[J].AIAA-2000-3622.
  • 3谢光军,胡茑庆,温熙森,吴建军.涡轮泵实时故障检测短数据均值自适应阈值算法[J].推进技术,2005,26(3):202-205. 被引量:10
  • 4Xie G J,Qiu Z.Qin G J,et al.Real-time Turbopump Health Monitoring System Based on Vibration Measurement [A].In:T.D.WEN ed.6th International Symposium on Test and Measurement (ISTM) [C],Beijing:International Academic Publishers/World Publishing Corporation,2005:2286-2290.
  • 5谢光军,李俭川,胡茑庆,温熙森.涡轮泵实时故障检测的多特征参量自适应阈值综合决策算法[J].中国机械工程,2005,16(13):1184-1187. 被引量:10
  • 6Xie G J,Hu N Q,Wen X S,et al.Health Monitoring System of Turbopump[A].41th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C],AIAA-2005-3948.
  • 7谢光军,胡海峰,秦国军,胡茑庆,温熙森.液体火箭发动机涡轮泵健康监控系统[J].国防科技大学学报,2005,27(3):40-44. 被引量:9
  • 8Kohonen T.Self-organizing Maps[M].Third edition,Spring,Berlin:Heidelberg,2001.
  • 9王慧.[D].中国航天科技集团公司,2003.

二级参考文献20

  • 1杨尔辅,张振鹏,刘国球,崔定军,罗靖宇,胡平信,张楠,尘军,范军.YF—75发动机状态监控与故障诊断工程应用系统的研制[J].推进技术,1997,18(1):65-72. 被引量:8
  • 2DiMaggio S J, Sako B H. Basic system Identification for Condition Monitoring of Turbopumps[A]. Aerospace Conference[C],IEEE Proceedings, 2001,(7): 3189-3200.
  • 3王慧.[D].北京:中国航天科技集团公司,2003.
  • 4Coffin T, et al. Specialized Data Analysis of SSME and Advanced Propulsion System Vibration Measurements[R].NASA Contractor Technology Reports, 1994 (N 94-29868).
  • 5Fiorucci T R, Lakin D R Ⅱ, Reynolds T D. Advanced Engine Health Management Applications of the SSME Real-time Vibration Monitoring System[A].36t h AIAAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, Alabama, July 17-19,2000 (AIAA-2000-3622).
  • 6Surko P,Zakrajsek J F. PTDS: Space Shuttle Main Engine Post Test Diagnostic Expert System for Turbopump Condition Monitoring[A]. SAE Technical Paper Series, Aerotech'92 Anahelm, California, October 5-8, 1992(SAE922059).
  • 7Jue F, Kuck F. Space Shuttle Main Engine (SSME) Options for the Future Shuttle[A].38th AIAAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibi t, Indianapolis, Indiana, America, July 7-10,2002 (AIAA 2002-3758).
  • 8Hudson S T, Zoladz T F, Dorney D J. Rocket Engine Turbine Blade Surface Pressure Distributions: Experiment and Computations[J]. Journal of Propulsion and Power, 2003, 19(3): 364-373.
  • 9Jue F, Kuck F. Space shuttle main engine (SSME) options for the future shuttle[ R]. AIAA 2002-3758.
  • 10Biggs R. Probabilistic risk assessment for the space shuttle main engine with a turbomachinery vibration monitor cutoff system[R]. AIAA 90-2712.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部