期刊文献+

m维瓶颈指派问题的动态规划模型 被引量:3

Dynamic Programming Model for Problem of m-Dimensional Bottleneck Assignment
下载PDF
导出
摘要 m维瓶颈指派问题:把m个人指派到n项工作上(m>n),要求每人只做一件工作,已知每人做每件工作的效益,问题是如何把m人划分成n组m1,m2,…,mn,nΣj=1mj=m,让mj组人去做第j件工作,可使效益最低的一组效益达到最大。本文对此问题建立了动态规划模型,并利用黄金分割律作为工具给出了动态规划模型的解。最后,文章给出一个算例以说明该方法的可行性和有效性。 The problem of m-dimensional bottleneck assignment is that m persons are assigned to n pieces jobs ( m 〉 n) and each person only does one piece of job, here the benefit of someone does some job is known, the aim is how to divide m persons into n groups m1, m2, …, mn ,∑j=1 mj=m and let the mj group to do the j-th job(j = 1,2, … n)in order to make the group with the minimum benefit obtain the maximum benefit. In this paper, a dynamic programming model of the m-dimensional bottleneck assignment problem is established; also a suitable solution to this model is given based on golden section rule. Finally, a numerical example is used to illustrate the proposed method.
作者 岳中亮
出处 《湛江海洋大学学报》 CAS 2005年第6期73-76,共4页 Journal of Zhanjiang Ocean University
关键词 瓶颈指派问题 动态规划 黄金比 bottleneck assignment problem dynamic programming golden ratio
  • 相关文献

参考文献9

  • 1Gross O.The Bottleneck Assignment Problem[M].Santa Monica:The Rand Corporation,1959.
  • 2Garfinkel R S.An Improved for the Bottleneck Assignment Problem[J].Oper Res,1971,19:1747-1751.
  • 3Lawler E L.Combinatorial Optimization[M].New York:Halt,Rinehart and Winston,1976.
  • 4Benjamin Lev and Howard J.Weiss.Introduction to Mathematical Programming[M].New York,1982.
  • 5Hammer P L.Time Minimizing Transportation Problems[J].Nav.Res.Logist.Quart,1969,16:345-472.
  • 6Szwarc W.Some Remarks on the Time Transportation Problem[J].Nav.Res.Logist.Quart,1971,18:473-484.
  • 7罗宗俊.一个m维整数瓶颈运输问题及其算法[J].数值计算与计算机应用,2001,22(1):63-70. 被引量:12
  • 8唐春霞,韩丽娟,王瑞江,梁峰.二维瓶颈指派问题的动态规划算法[J].贵州工业大学学报(自然科学版),2004,33(1):6-9. 被引量:4
  • 9胡运权 郭耀煌.运筹学教程(第二版)[M].北京:清华大学出版社,2004..

二级参考文献11

共引文献12

同被引文献17

  • 1李引珍,郭耀煌.一类带时间约束指派问题的分枝定界算法[J].系统工程理论与实践,2005,25(6):39-42. 被引量:14
  • 2岳中亮,纪凤兰.m-维瓶颈运输问题的动态规划解[J].东北财经大学学报,2005,6(6):3-5. 被引量:1
  • 3苏祥定,孙桐,马霖.不平衡指派问题的差额法求解及其应用[J].计算机工程,2005,31(22):178-180. 被引量:6
  • 4[3]胡运权,郭耀煌.运筹学教程[M].北京:清华大学出版社,2004.
  • 5[2]Gross O.The bottleneck assignment problem[M].Santa Monica:The Rand Corporation,1959.
  • 6[5]Garfinkel,R S.An improved algorithm for the bottleneck assignment problem[J].Ops Res.1971(19):1747-1751.
  • 7[6]Benjamin Lev,Howard J.Weiss Introduction to mathematical programming[M].New york:1982:159-161.
  • 8滕传琳.管理运筹科M].北京:中国铁道出版社,1986.
  • 9KUMAR AVANISH. A Modified Method for Solving the Unbalanced Assignment Problems [J]. Applied Mathematics and Computat ion ,2006, ( 176 ).
  • 10COHEN REUVEN, KATZIR LIRAN, RAZ DANNY. An Efficient Approximation for the Generalized Assignment Problem [J]. Information Processing Letters,2006,(100).

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部