期刊文献+

基于人工免疫响应的线性系统逼近 被引量:10

原文传递
导出
摘要 提出一种基于人工免疫响应的线性系统逼近算法.给出了人工免疫响应的四元组模型,为免疫响应过程建立了一个可用于工程计算的数学模型;设计了克隆选择、免疫记忆和免疫调节等具体操作,模拟了抗体克隆选择、免疫记忆、基因免疫、免疫耐受等现象,实现了人工免疫响应的记忆学习.基于抗体群的随机状态转移过程,证明了新算法具有全局收敛性.基于两个典型的稳定或非稳定线性系统逼近问题的数值试验表明,无论在固定的区间内搜索还是在动态扩展的区间内搜索,人工免疫响应算法都能得到线性系统的最优逼近模型,算法是有效的.
出处 《中国科学(E辑)》 CSCD 北大核心 2005年第12期1288-1303,共16页 Science in China(Series E)
基金 国家"863"(2002AA135080) "973"(2001CB309403) 国家自然科学基金(批准号:60133010 60372045) 西安电子科技大学研究生创新基金资助项目
  • 相关文献

参考文献17

  • 1Fortuna L,Nunnari G,Gallo A.Model Order Reduction Techniques with Applications in Electrical Engineering.London:Springer-Verlag,1992.
  • 2Cheng S L,Huang C Y.Optimal approximation of linear systems by a differential evolution algorithm.IEEE Transactions on systems,man,and cybernetics-part A,2001,31(6):698~707.
  • 3Guo T Y,Huang C Y.Optimal reduced-order models for unstable and nonminimum-phase systems.IEEE Transactions on Circuits and Systems-I,1996,43(9):800~805.
  • 4Zhong W C,Liu J,Xue M Z,et al.A multiagent genetic algorithm for global numerical optimization.IEEE Transactions on systems,man,and cybernetics-part B,2004,34(2):1128~1141.
  • 5钟伟才,刘静,焦李成.多智能体遗传算法用于线性系统逼近[J].自动化学报,2004,30(6):933-938. 被引量:25
  • 6Spanos J T,Milman M H,Mingori D L.A new algorithm for L2 optimal model reduction.Automatics,1992,28(5):897~909.
  • 7Leandro N,de Castro,Jonathan T.Artificial Immune Systems:A New Computational Intelligence Approach.Springer Verlag,2002.
  • 8焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224
  • 9de Castro L N,Von Zuben F J.Learning and optimization using the clonal selection principle.IEEE Transactions on Evolutionary Computation,Special Issue on Artificial Immune Systems,2002,6(3):239~251.
  • 10Dasgupta D.Artificial Immune Systems and Their Applications.Springer-Verlag,1999.

二级参考文献61

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 4学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 5M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.
  • 6R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18.
  • 7R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59.
  • 8A Christopher, Welty, G Peter, Selfridge. Artificial intelligence and software engineering: Breaking the toy mold [ J ]. Automated Software Engineering. 1997,4(3) :255 - 270.
  • 9Donald Gillies. Book review: Artificial intelligence and scientific method [ J]. Journal of Intelligent and Robotic Systems. 1998,22( 1 ) :87-95.
  • 10G Sartor, L Karl Branting. Introduction: Judicial Applications of artificial intelligence [J]. Artificial Intelligence and Law, 1998,6(24) : 105- 110.

共引文献247

同被引文献78

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部