期刊文献+

指数有界的n次积分C-半群的逼近定理 被引量:3

ON THE APPROXIMATION OF EXPONENTIALLY BOUNDED n-TIMES INTEGRATED C-SEMIGROUPS
下载PDF
导出
摘要 为了解决更多类型的抽象柯西问题,在半群理论中引入了n次积分C-半群,推广了n次积分半群和C-半群.结合n次积分半群逼近定理和C-半群逼近定理以及n次积分C-半群的相关性质,在指数有界条件下,得到n次积分C-半群的逼近理论,从而也推广了n次积分半群逼近定理和C-半群逼近定理. In order to solve some abstract Cauchy problems, mathematicians created n- times integrated C -semigroups, then generalized n- times integrated semigroups and C- semigroups. In this paper, we conclude the approximation theorem of exponentially bounded n- times integrated C- semigroups by combining the approximation theorem of n- times integrated semigroups and the approximation theorem and then generalize the two approximation theorems.
作者 王文娟
出处 《安徽师范大学学报(自然科学版)》 CAS 2005年第4期386-389,共4页 Journal of Anhui Normal University(Natural Science)
基金 安徽省教育厅自然科学基金(2003kj65)
关键词 n次积分C-半群 指数有界 C-预解集 C-伪预解式 n- times integrated C-semigroups exponentially bounded C- resolvent set C- pseudoresolvent
  • 相关文献

参考文献7

  • 1Arendt W.Vector-valaued Laplace transforms and Cauchy problems[J].Israel Journal of Mathematics,1987,59(3):327-352.
  • 2WANG Sheng-wang.Mild integreted C-existence families [J].Studia Mathematica,1995,112(3):251-266.
  • 3LI Yuan-chuan,Shaw Sen-yen.Integrated C-semigroup and the abstract Cauchy problem [J].Taiwancese J.of Math,1997,1:75-102.
  • 4Pazy A.Semigroup of linear operators and applications to partial differential equaitons [M].New York:Springer-Verlag,1983.
  • 5Lizama C.On the convergence and approximation of integrated semigroups [J].J Math Anal Appl,1994,181:89-103.
  • 6Delaubenfels R.Existence families,functional calculus and evolution equations [M].Lect Notes Math Springer-verlag,1994,1570.
  • 7郑权,雷岩松.EXPONENTIALLY BOUNDED C-SEMIGROUP AND INTEGRATED SEMIGROUP WITH NONDENSELY DEFINED GENERATORS I: APPROXIMATION:[J].Acta Mathematica Scientia,1993,13(3):251-260. 被引量:6

共引文献5

同被引文献25

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部