期刊文献+

Parallelism of spatial data mining based on autocorrelation decision tree 被引量:1

Parallelism of spatial data mining based on autocorrelation decision tree
下载PDF
导出
摘要 Define and theory of autocorrelation decision tree (ADT) is introduced. In spatial data mining, spatial parallel query are very expensive operations. A new parallel algorithm in terms of autocorrelation decision tree is presented. And the new method reduces CPU- and I/O-time and improves the query efficiency of spatial data. For dynamic load balancing, there are better control and optimization. Experimental performance comparison shows that the improved algorithm can obtain a optimal accelerator with the same quantities of processors. There are more completely accesses on nodes. And an individual implement of intelligent information retrieval for spatial data mining is presented. Define and theory of autocorrelation decision tree (ADT) is introduced. In spatial data mining, spatial parallel query are very expensive operations. A new parallel algorithm in terms of autocorrelation decision tree is presented. And the new method reduces CPU- and I/O-time and improves the query efficiency of spatial data. For dynamic load balancing, there are better control and optimization. Experimental performance comparison shows that the improved algorithm can obtain a optimal accelerator with the same quantities of processors. There are more completely accesses on nodes. And an individual implement of intelligent information retrieval for spatial data mining is presented.
机构地区 Dept. of Automation
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期947-956,共10页 系统工程与电子技术(英文版)
关键词 spatial databases autocorrelation attribute decision tree parallelism. spatial databases, autocorrelation attribute, decision tree, parallelism.
  • 相关文献

参考文献13

  • 1Guttman R. A dynamic index structure for spatial searching. Proc. ACM SIGMOD Int. Conf. on Management of data, Boston, MA, 1984: 47-57.
  • 2Li Ya. The local influence analysis of time sequence auro-correlation function. Yunnan University Transaction,2002, 24(6): 409-413.
  • 3Beckmann N, Kriegel H P, Schneider R, et al. The auto-correlation decision tree: an efficient and robust access method for point and rectangles. Proceedings of ACM-SIGMOD Intl. Conf. on Management of Data, 2001.322-331.
  • 4Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using autocorrelation decision tree'. Proc.ACM SIGMOD Int. Conf. on Management of Data,Washington, DC, 2001. 237-246.
  • 5DeWitt D J, Kabra N, Lou J, et al. Client-server paradise, proc. 20th Int. Conf. an Very Large Databases,Santiago, Chile, 1994. 558-569.
  • 6Montage Software. The Montage SPATIAL Data Blade.1993.
  • 7Orenstein J A, Manola F A. PROBE spatial data modeling and query processing in an image database application.IEEE Trans. on Software Engineering, 2002, 14 (5) :611-629.
  • 8Preparata F P, Shamos M I. Computational geometry.Springer, 1985.
  • 9Brinkhoff T, Kriegel H P, Seeger B. Parallel processing of spatial joins using R * -trees. Int. Conf. on Data Engineering, 1997. 365-371.
  • 10Huang Chao. MDL-based decision tree pruning, www.DMgroup. org.

同被引文献32

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 3HERSKOVITS E H, GERRING J P. Application of a datamining method based on Bayesian networks to lesion-deficit analysis[J]. NeuroImage, 2003,19(4) : 1664-1673.
  • 4ESTIVILL-CASTRO V, LEE I. Clustering with obstacles for geographical data mining[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004,59(1 - 2) : 21-34.
  • 5KANEVSKI M, PARKIN R, POZDNUKHOV A, et al. Environmental data mining and modeling based on machine learning algorithms and geostatistics[J]. Environmental Modelling& Software, 2004,19(9) :845-855.
  • 6MURRAY A T, ESTIVILL- CASTRO V. Cluster discovery techniques for exploratory spatial data analysis[J]. International Journal of Geographical Information Science, 1998, 12 ( 5 ) : 431 -443.
  • 7RAYMOND T N, HAN J. CI.ARANS: A method for clustering objects for spatial data mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2002,14(5) : 1003- 1016.
  • 8BEGEJA L, DRUCKER H, GIBBON D, et al. Semantic data mining of short utterances[J]. IEEE Transactions on Speech and Audio Processing, 2005,13 (5) : 672-680.
  • 9KEIM D A, PANSE C, SIPS M, et al. Pixel based visual data mining of geo-spatial data[J]. Computers & Graphics, 2004, 28(3) :327-344.
  • 10ESTIVILL-CASTRO V, HOULE M E. Robust distance-based clustering with applications to spatial data mining[J]. Algorithmica, 2001,30(2) : 216- 242.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部