摘要
Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement. The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, ^~Te/Te - ^~n/ne and θ-^~Te^~ne- π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving.
Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement. The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, ^~Te/Te - ^~n/ne and θ-^~Te^~ne- π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving.
基金
National Natural Science Foundation of China (No 10175069)