摘要
The aim of this study is to investigate the biological effects of ion beams on pollen. Pollen grains of Cedrus deodara were implanted with 30 keV nitrogen ion beams at doses ranging from 1 × 10^15 ions/cm^2 to 15 × 10^15 ions/cm^2. The effects of N^+ implantation on the pollen exine substructure were examined using an atomic force microscope (AFM), and the structure and morphology of pollen and pollen tubes were observed using a laser scanning confocal microscope (LSCM). AFM observations distinctly revealed the erosion of the pollen exine caused by N^+ implantation in the micrometer to nanometer range. Typical results showed that the erosion degree was linearly proportional to the ion dose. Pollen germination experiments in vitro indicated that N^+ implantation within a certain dose range increased the rate of pollen germination. The main abnormal phenomena in pollen tubes were also analyzed. Our results suggest that low energy ion implantation with suitable energy and dosage can be used to break the pollen wall to induce a transfer of exogenous DNA into the pollen without any damage to the cytoplasm and nuclei of the pollen. The present study suggests that a combination of the method of ion-beam-induced gene transfer and the pollen-tube pathway method (PTPW) would be a new plant transformation method.
The aim of this study is to investigate the biological effects of ion beams on pollen. Pollen grains of Cedrus deodara were implanted with 30 keV nitrogen ion beams at doses ranging from 1 × 10^15 ions/cm^2 to 15 × 10^15 ions/cm^2. The effects of N^+ implantation on the pollen exine substructure were examined using an atomic force microscope (AFM), and the structure and morphology of pollen and pollen tubes were observed using a laser scanning confocal microscope (LSCM). AFM observations distinctly revealed the erosion of the pollen exine caused by N^+ implantation in the micrometer to nanometer range. Typical results showed that the erosion degree was linearly proportional to the ion dose. Pollen germination experiments in vitro indicated that N^+ implantation within a certain dose range increased the rate of pollen germination. The main abnormal phenomena in pollen tubes were also analyzed. Our results suggest that low energy ion implantation with suitable energy and dosage can be used to break the pollen wall to induce a transfer of exogenous DNA into the pollen without any damage to the cytoplasm and nuclei of the pollen. The present study suggests that a combination of the method of ion-beam-induced gene transfer and the pollen-tube pathway method (PTPW) would be a new plant transformation method.
基金
National Key Projects of China (No. 2001BA302B)