摘要
本文通过引入两个函数u(x)和v(x),(x∈[0,+∞))建立了一个新的H ib lert型不等式.特别,当u(m)=m+λ及v(n)=n+λ(∈N0,λ=12,1)时,得到了H ilbert不等式的一个改进.作为应用,给出了F e jer-R iesz不等式的推广和改进.
In this paper,it is shown that a new Hilbert's type inequality can be established by introducing two functions u(x) and v(x).In particular,when u(m)-=m+λ and v(n)=n+λ(m,n∈No,λ=1/2,1),a refinement of Hilbet's inequality is obtained. As application,both an extension and an improvement on Fejer- Riesz's inequality are given.
出处
《数学理论与应用》
2005年第4期78-81,共4页
Mathematical Theory and Applications