期刊文献+

犬骨髓基质细胞和β-磷酸三钙复合物在裸鼠体内的成骨性能 被引量:9

Osteogenesis of the construct combined BMSCs with β-TCP in nude mice
下载PDF
导出
摘要 目的:观察犬骨髓基质细胞(bone marrow stromalcells,BMSCs)和支架材料β-磷酸三钙(β-TCP)复合物植入裸鼠体内的成骨情况。方法:首先在体外构建BMSCs和β-TCP的复合物,大小3mm3左右。实验分为3组:裸鼠体内植入单纯β-TCP,植入未经体外培养的BMSCs和β-TCP复合体,植入体外培养5d的BMSCs和β-TCP复合体。植入后1周、1个月和3个月取出标本,进行大体观察、X线片观察、灰度测定、组织学观察及成骨图像分析。结果:植入后3个月,BMSCs+β-TCP体外培养组X线片密度最高,DigiDensX线片灰度值3组分别为:0.605>0.555>0.473(P<0.01)。HE染色显示:1个月后,BMSCs+β-TCP体外培养组见新骨和血管形成;3个月后,BMSCs+β-TCP体外培养组新骨形成明显,并有大量血管生成,BMSCs+β-TCP体外未培养组少量成骨,单纯β-TCP组未见明显成骨。成骨图像分析3组成骨密度均数分别为:23.99%、8.36%、1.23%(P<0.05)。结论:BMSCs+β-TCP复合物植入裸鼠体内4周出现新骨形成,3个月时,骨形成明显并有血管化生成。 PURPOSE: To study the osteogenic capability of the construct combined dog's bone marrow stromal cells (BMSCs) with β-tricalcium phosphate (β-TCP) in vivo. METHODS: 3 groups of materials were implanted into the nude mice .Group 1 (β-TCP with no cells), Group 2 (β-TCP+cells no incubated) and Group 3 (β-TCP+cells incubated), 1 week, 1 month and 3 months after implantation, the specimens were harvested for gross observation, radiographic examination, histological observation and KS400 osteogenous analysis. RESULTS: The group of β-BMSCs+TCP incubated had the highest radiodensity. The DigiDens radiodensity of 3 groups were 0.605 (BMSCs+β-TCP incubated)〉 0.555 (BMSCs+β-TCP non-incubated)〉0,473 (β-TCP with no cells), P〈0.01. HE staining showed the bone formation and vascularization 3 months later in the group of BMSCs+β-TCP incubated. Bone formation in KS400 image analysis sequentially were, 23.99%, 8,36%, 1.23% with significant difference, CONCLUSIONS: Constructs of BMSCs with β-TCP have new bone formation, collagen synthesis and vascularization in nude mice implantation.
出处 《中国口腔颌面外科杂志》 CAS 2005年第4期339-344,共6页 China Journal of Oral and Maxillofacial Surgery
基金 上海市重点学科(优势学科)建设项目(Y0203) 国家863计划子课题(2002AA205011)项目 上海市科委项目资助(05DJ14006) 上海市教委项目资助(04BC39)
关键词 骨髓基质细胞 Β-磷酸三钙 裸鼠 复合物 成骨性能 体内 Bone marrow stromal cells(BMSCs) β-tricalcium phosphate (β-TCP) Osteogenesis In vivo Nude mice
  • 相关文献

参考文献11

  • 1[1]Sous M,Bareille R,Rouais F,et al.Cellular biocompatibility and resistance to compression of macroporous beta-tricalcium phosphate ceramics[J].Biomaterials,1998,19(23):2147-2153.
  • 2[2]Pioletti DP,Takei H,Lin T,et al.The effects of calcium phosphate cement particles on osteoblast functions [J].Biomaterials,2000,21(11):1103-1114.
  • 3[3]Koepp HE,Schorlemmer S,Kessler S,et al.Biocompatibility and osseointegration of beta -TCP:histomorphological and biomechanical studies in a weight-bearing sheep model [J].J Biomed Mater Res,2004,70(2):209-217.
  • 4[4]Mankani MH,Kuznetsov SA,Fowler B,et al.In vivo bone formation by human bone marrow stromal cells:effect of carrier particle size and shape [J].Biotechnol Bioeng,2001,72(1):96-107.
  • 5杨耀武,雷德林,毛天球,侯锐,高瞻,李建虎.磷酸钙钠/β-磷酸三钙陶瓷支架接种骨髓基质细胞成骨性能的研究[J].上海口腔医学,2004,13(4):278-281. 被引量:3
  • 6[6]Mauney JR,Sjostorm S,Blumberg J,et al.Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro [J].Calcif Tissue Int,2004,74(5):458-468.
  • 7[7]Mauney JR,Jaquiery C,Volloch V,et al.In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering [J].Biomaterials,2005,26(16):3173-3185.
  • 8[8]Kohn DH,Sarmadi M,Helman JI,et al.Effects of pH on human bone marrow stromal cells in vitro:implications for tissue engineering of bone [J].J Biomed Mater Res,2002,60(2):292-299.
  • 9[9]Wu X,Rabkin-Aikawa E,Guleserian KJ,et al.Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells [J].Am J Physiol Heart Circ Physiol,2004,287(2):480-487.
  • 10[10]Huang W,Carlsen B,Wulur I,et al.BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold [J].Exp Cell Res,2004,299(2):325-334.

二级参考文献8

  • 1Ueno Y, Sasaki S,Shima Y,et al. Studies of sintered bone as a bone substitute[J]. Orthop Ceramic Implants, 1983,3:11-16.
  • 2Matsuda M,Kita S, Takekawa M,et al. Scanning electron and light microscopic observations on the healing process after sintered bone implantation in rats[J]. Histo Histopathol, 1995, 10(3):673-679.
  • 3Kangasniemi I, de Groot K, Wolke J, et al. The stability of hydroxyapatite in an optimized bioactive glass matrix at sintering temperature[J]. J Mater Sci: Mater Med, 1991,2: 133-137.
  • 4Berger G,Gildenhaar R,Ploska U. Rapid resorbable,glassy crystalline materials on the basic of calcium alkali orthophosphate [J].Biomaterials, 1995,16:1241-1248.
  • 5Ramselaar MM, van Mullem PJ, Kalk W, et al. In vivo reactions to particulate rehenanite and particulate hydroxyapatite after implantation in tooth sockets[J]. J Mater Sci-Mater Med, 1993,4:311 -317.
  • 6Matsumoto T,Kawakami M, Kuribayashi K, et al. Effects of sintered bovine bone on cell proliferation, collagen synthesis, and osteoblastic expression in MC3T3-E1 osteoblast-like cells [J]. J Orthop Res, 1999, 17:586-592.
  • 7Mats H,Andreas C, Sven L A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation: Results after 6 to 8 months of healing[J]. Clin Oral Implant Res,2001,12(2): 135-143.
  • 8Lin FH,Liao CJ,Chen KS,et al. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7·H2Oaddition[J].Biomaterials, 1999,20:475-484.

共引文献2

同被引文献91

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部