期刊文献+

基于SOFM神经网络的变压器油中溶解气体的故障分析 被引量:8

Analysis of Dissolved Gas in Transformers Based on Self-Organising Feature Map
下载PDF
导出
摘要 油浸的电力变压器无论在正常老化还是故障运行时都会产生低分子烃类,CO,CO2等气体,这些气体将会溶解于油中。这样人们根据油中溶解的气体种类和浓度就可以判断变压器是否有故障、以及故障的种类等信息。但是由于各种故障对应的产气情况十分复杂,至今人们还没有建立它们之间的精确关系。因此,根据变压器油中各气体的浓度以识别变压器故障的模式识别方法应运而生。文章提出了一种基于SOFM神经网络的变压器油中溶解气体的故障分析方法,并实例分析证明该方法的有效性。 Oil-filled power transformers will generate some gases, such as hydrocarbon, carbon dioxide and carbon monoxide. They will be dissolved in oil. People can get the faults information of transformers by analyzing the dissolved gases in oil. But complex relationship exists between the faults and the gass. This paper presents a method based on self-organizing feature map to analyze the dissolved gas. The results indicate that the methods is effective.
出处 《电力科学与工程》 2005年第4期15-18,共4页 Electric Power Science and Engineering
关键词 电力变压器 故障诊断 神经网络 自组织特征映射(SOFM) 溶解气体分析(DGA) 气相色谱 power transformer fault diagnosis Artifieal NeuralNetwork (ANN) Self-Organising Feature Map (SOFM) Dis-solved Gas-in-Oil Analysis (DGA) chromatography
  • 相关文献

参考文献4

二级参考文献14

共引文献54

同被引文献47

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部