期刊文献+

神经网络用于苯乙胺衍生物的QSAR研究 被引量:18

Neural Networks in QSAR Studies:Estimation and Prediction of the Biological Activity for N,N-dimethyl-2-bromo(substituted phenyl) ethylamine Derivatives
下载PDF
导出
摘要 将神经网络应用于定量构效关系(QSAR)中。采用改进的反向传播算法探讨了肾上腺素能阻断剂N,N-二甲基-2-溴苯乙胺取代衍生物的生物活性与取代基疏水参数(Σπ)和电子参数(Σσ)之间的关系。获得了精密的拟合及准确的预测(最大误差小于10%),优于多无线性回归法。作为一种有效的化学计量学工具(Chemometrics),神经网络具有良好的预测效果及较强的非线性处理功能,可望在QSAR及药物制剂中发挥重要作用。 Neural networks(NN) methods were applied to quantitative structure-activity relationship(QSAR) studies.The relationship between biological activity(PC) and eletronic and hydrophobic parameters(sigma and pi) of N,N-dimethyl-2-bromo-(substituted phenyl)-ethylamines was investigated by using the modified backpropagation(MBP) neural networks. The biological activity of N, N-dimethyl-2-bromo-(substituted phenyl)-ethylamine derivatives was estimated and predicted with the relative error less than 10% and with correct classification ratio being 91%. The results obtained by the developed MBPNN method seemed to be better than those by multivariate linear regression(MLR). The neural networks(MBPNN) method might therefore be regarded as an excellent and effective chemometric modelling technique for estimating and predicting biological activity on basic QSAR studies.
出处 《中国药物化学杂志》 CAS CSCD 1996年第1期38-42,共5页 Chinese Journal of Medicinal Chemistry
基金 国家教委资助 机械部资助 国家自然科学基金 开放实验室基金
关键词 苯乙胺衍生物 药物化学 神经网络 构效关系 Neural networks Modified backpropagation Chemometrics Modelling and prediction method Substituted phenylethylamines QASR studies
  • 相关文献

同被引文献100

引证文献18

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部