期刊文献+

R-L-W方程的精确解

Exact Solutions for R-L-W Equation
下载PDF
导出
摘要 根据齐次平衡原则和F-展开法求出了R-L-W方程的用Jacobi椭圆函数表示的双周期解,在极限情形下,得到了方程的孤立波解和用三角函数表示的单周期波解. A number of doubly periodic wave expressed by Jacobi elliptic functions to the R - L- W equation are obtained by using the homogeneous balance principle and F- expansion method, which can be thought as over all generalization of Jacobi elliption function expansion method proposed recently. In the limit cases, the solitary wave solutions and other types of single periodic wave solutions to the system are obtained as well.
作者 黎明
出处 《曲靖师范学院学报》 2005年第6期35-39,共5页 Journal of Qujing Normal University
基金 云南省教育厅科研立项基金项目"非线性方程的极限环与行波解研究"(5Y0012A)
关键词 R—L—W方程 F-展开法 精确解 R- L- W equation F- expansion method exact solution
  • 相关文献

参考文献2

二级参考文献30

  • 1Liu Shikuo,Fu Zuntao,Liu Shida,et al.Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations[J].Physics Letters A,2001,289:69-74.
  • 2Parkes E J,Duffy B R,Abbott P C.The Jacobi Elliptic-function Method for Finding Periodic-Wave Solutions to Nonlinear Evolution Equations[J].Physics Letters A,2002,295:280-286.
  • 3Zhou Yubin,Wang Mingliang,Wang Yueming.Periodic Wave Solutions to a Coupled KdV Equations with Variable Coefficients[J].Physics Letters A,2003,308:31-36.
  • 4Wang Mingliang,Zhou Yubin.The Periodic Wave Solutions for the Klein-Gordn-Schrdinger Equations[J].Physics Letters A,2003,318:84-92.
  • 5Zhou Yubin,Wang Mingliang,Miao Tiande.The Periodic Wave Solutions and Solitary Wave Solutions for a Class of Nonlinear Partial Differential Equations[J].Physics Letters A,2004,323:77-88.
  • 6Serge Lang.Elliptic Functions[M].北京:世界图书出版公司北京公司,2003.
  • 7闫振亚,张鸿庆.非线性浅水长波近似方程组的显式精确解[J].物理学报,1999,48(11):1962-1968. 被引量:42
  • 8王跃明,王明亮.两个非线性偏微分方程的分离变量解[J].洛阳工学院学报,2000,21(2):88-90. 被引量:14
  • 9张金良,王跃明,王明亮,李琦.一般变系数KdV方程的自—BT和变速孤立波解[J].洛阳工学院学报,2000,21(3):80-82. 被引量:32
  • 10王跃明,张金良,王明亮.变系数Burgers方程的BT与非线性边值—初值问题[J].洛阳工学院学报,2000,21(3):83-86. 被引量:22

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部