期刊文献+

带有临界Sobolev和Hardy项的半线性椭圆方程的解(Ⅰ)(英文)

Solutions for Semilinear Elliptic Equations with Critical Sobolev and Hardy Terms(Ⅰ)
下载PDF
导出
摘要 设ΩRN是有界光滑区域,0∈,ΩN≥3,2*:=2NN-2,0≤s<2,2*(s):=2(N-s)N-2,2<r<2*(s).对于满足一定条件的参数λ和μ,证明了带D irich let边界条件的奇异椭圆问题-Δu-μu x 2=u 2*-2u+λu Let Ωbelong to R^N be a smooth bounded domain such that 0 ∈Ω ,N≥3,2^*:=2N/N-2,0≤s〈2,2^*(s):=2(N-s)/N-2,2〈r〈2^*(s).We prove some crucial properties of the singular critical problem-△u-μu/|x|^2=|u|^2+-2u+λ|u|^r-2/|x|^1uwith Diriehlet boundary eondition on Ω for suitable positive parameters λ and μ.
作者 康东升
出处 《中南民族大学学报(自然科学版)》 CAS 2005年第4期90-93,共4页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(10171036) 中南民族大学自然科学基金资助项目(YZZ05017)
关键词 临界SOBOLEV指标 紧性 奇性 solutions critical Sobolev exponents compactness singularity
  • 相关文献

参考文献12

  • 1Cao D,Peng S. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms[J]]. J Differential Equations, 2003, 193 (2) : 424-434.
  • 2Ferrero A,Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [J]. J Differential Equations, 2001,177 (2) : 494-522.
  • 3Garcia J P,Peral I. Hardy inequalities and some critical elliptic and parabolic problems [J]. J Differential Equations, 1998,144(2) :441-476.
  • 4Jannelli E. The role played by space dimension in elliptic critical problems[J]. J Differential Equations,1999,156 (2) : 407-426.
  • 5Chou K,Chu C. On the best constant for a weighted Sobolev-Hardy inequality [J]. J London Math Soc,1993,48(1):137-151.
  • 6Catrina F,Wang Z. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence ( and nonexistence), and symmetry of extermal functions[J]. Comm Pure Appl Math ,2001,54(2):229-257.
  • 7Ghoussoub N,Yuan C. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents [J]. Trans Amer Math Soc, 2000,352 (12) :5703-5743.
  • 8Ekeland I,Ghoussoub N. Selected new aspects of the calculus of variations in the large[J]. Bull Amer Math Soc, 2002,39 (2) : 207 - 265.
  • 9Terracini S. On positive solutions to a class equations with a singular coefficient and critical exponent[J].Adv Differential Equations, 1996,2(1):241 - 264.
  • 10Kang D,Peng S. Positive solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Appl Math Letters, 2004,17(4):411 - 416.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部