期刊文献+

连续时间加噪声随机T-S模糊系统的适定性

On the well-posedness of the continuous-time stochastic T-S fuzzy system with additive noise
下载PDF
导出
摘要 研究了连续时间加噪声随机T-S模糊系统在Ito∧意义下适定性问题,给出了存在惟一性定理的证明.举例说明了相关文献中所使用的加噪声随机T-S模糊系统模型解不具有均方积分意义下适定性,从而有力地说明了Ito∧积分在加噪声随机T-S模糊系统模型订义中的重要价值. The problem of well-posedness of the continuous-time stochastic T-S fuzzy system with additive noise is studied in Ito^ stochastic sense. The theorem of the existence and uniqueness of solutions is proved. Regarding a model of the continuous-time stochastic T-S fuzzy system with additive noise addressed in the literature, an example is given to show its well-posedness is not assured in mean-square sense. Above all, this paper shows the importance of the Ito^ integral in the definition of the model of stochastic T-S fuzzy system with additive noise.
作者 徐昊 胡良剑
出处 《纺织高校基础科学学报》 CAS 2005年第4期301-304,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(60374022)
关键词 加噪声 Ito^型随机积分 解的存在惟一性 适定性 additive noise Ito^ integral existence and uniqueness well-posedness
  • 相关文献

参考文献11

  • 1CHANG W J,SHING C C.Extending covariance control for a class of discrete fuzzy stochastic systems[A].Proc IEEE Conf Fuzzy Systems[C].Honolulu:IEEE Press,2002.558-563.
  • 2李德权,孙长银,费树岷.不确定离散模糊随机系统的鲁棒方差约束输出反馈控制[J].模糊系统与数学,2004,18(2):100-107. 被引量:1
  • 3CHANG W J,MU S M.Upper bound covariance control for continuous fuzzy stochastic systems with structured perturbations[A].Proc IEEE Conf Fuzzy Systems[C].Honolulu:IEEE Press,2002.92-97.
  • 4CHEN B S,LEE B K,GUO L B.Optimal tracking design for stochastic fuzzy systems[J].IEEE Trans Fuzzy Syst,2003,12(6):1-19.
  • 5叶道平,崔莉莉.连续模糊随机系统的方差约束控制[J].合肥工业大学学报(自然科学版),2003,26(2):306-310. 被引量:2
  • 6崔莉莉,杨志珍.连续模糊随机系统的输出反馈控制器设计[J].合肥工业大学学报(自然科学版),2003,26(4):637-640. 被引量:1
  • 7WANG Z,HO D W C,LIU X.A note on the robust stability of uncertain stochastic fuzzy systems with time-delays[J].IEEE Trans Syst,2004,(4):570-576.
  • 8胡良剑,邵世煌,吴让泉.T-S模糊随机系统的均方镇定[J].信息与控制,2004,33(5):545-549. 被引量:8
  • 9OKESENDAL B.Stochastic differential equations:An introduction with applications[M].Berlin:Springer-Verlag,1998.35-37.
  • 10MAO X.Stochastic Differential Equations and their Applications[M].Chichester:Springer-Horwood Publishing,1997,1-2;51-58;91-101.

二级参考文献28

  • 1Takagi T, Sugeno M. Fuzzy identification of system and its application to modeling and control[J]. IEEE Trans.Syst.,Man,Cybern.,1985, 15(1): 116~132.
  • 2Takagi T,Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy sets and Systems, 1992,45(2): 135~156.
  • 3Tanaka T, Ikeda T, Wang H O. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[J]. IEEE Trans.Fuzzy Systems, 1998,6(2): 250~265.
  • 4Li J, Niemann D, Wang H O, Tanaka K. Parallel distributed compensation for Takagi-Sugeno fuzzy models:multiobjective controller design[A]. Proc.ACC[C]. 1999,(3): 1832~1836.
  • 5Chang W J,Shing C C. Extending covariance control for a class of discrete fuzzy stochastic systems[A]. Proc.of the 2002 IEEE International Conference on Fuzzy Systems[C]. 2002,(1):558~563.
  • 6Xu J H, Skelton R E, Zhu G. Upper and lower covariance bounds for perturbed linear systems[J]. Automatic Control, IEEE Transactions on, 1990,35(8): 944~948.
  • 7Nguang S K, Shi P. H∞ Fuzzy output feedback control design for nonlinear systems:an LMI approach[A]. Proc.of the 40th IEEE Conference on Decision and Control[C]. 2001,5: 4352~4357.
  • 8Chen C L,Wang T C,Hsu S H. An LMI approach to H∞ fuzzy-output feedback control for nonlinear systems[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. Joint 9th, 2001,3:1838~1843.
  • 9Cao S G,Rees N W,Feng G. Analysis and design for a class of complex control systems(Part I:Fuzzy modelling and identification)[J]. Automatica, 1997,37(6):1017~1028.
  • 10Mattei M. A note on the solution of a class of BMIs for H∞ problems[A]. Proc.of the 39th IEEE Conference on Decision and Control[C]. 2000,3:2746~2747.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部