期刊文献+

超凸度量空间中的重合点与极小极大原理

COINCIDENCE POINTS AND MINIMAX PRINCIPLE IN HYPERCONVEX METRIC SPACES
下载PDF
导出
摘要 在超凸度量空间中,引进拟凸与拟凹概念,建立Ky Fan重合点定理,并得到极小极大原理与不动量定理。 The concept of quasi -convexity in hyperconvex metric spaces is introduced. A general coincidence theorem for set -valued mappings and the minimax principle are established in hyperconvex metric spaces.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2005年第6期559-561,共3页 Journal of Nanchang University(Natural Science)
关键词 超凸度量空间 HKKM映射 重合点 极小极大原理 不动点 hyperconvex metric space HKKM mapping coincidence point minimax principle fixed point
  • 相关文献

参考文献7

  • 1Aronszajn N and Panitchpakdi P.Extensions of Uniformly Continuous Transformations and Hyperconvex Metric Spaces[J].Pacific J Math,1956(6):405~439.
  • 2Khamsi M A.KKM and Ky Fan.Theorems in Hyperconvex Metric Spaces[J].J Math Anal Appl,1996(204):298~306.
  • 3Kirk W A,Sims B,Yuan X Z.The Knaster-Kuratowski and Mazurkiewicz Theor in Hyperconvex Metric Spaces and Some of Its Applications[J].Nonlinear Anal,2000(39):611~627.
  • 4Lacey H E.The Isometric Theory of Classical Banach Spaces[M].Springer Verlag New York,1974.
  • 5Sine R C.Hyperconvexity and Approximate Fixed Points[J].Nonlinear Anal,1989(13):863~869.
  • 6Tarafdar E,Yuan X Z.Some Applications of the Knaster-Kuratowski and Mazurkiewicz Principle in Hyperconvex Metric Spaces[J].Math Computer Model,2000(32):1 311~1 320.
  • 7Dugundji J,Granas A.Fixed Point Theory(Vol1)[M].Warszawa:PWN-Polish Sci.Publ,1982.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部