期刊文献+

Banach空间C_p中Birkhoof正交性的两个刻画 被引量:1

TWO CHARACTERIZATIONS OF BIRKHOFF ORTHOGONALITY IN BANACH SPACE C_p
下载PDF
导出
摘要 研究了Banach空间Cp中两元素A和B在B irkhoof意义下正交的条件,利用算子A的极分解A=U|A|,证明:当1<p<∞时,A正交于B的充要条件是tr(|A|p-1U*B)=0;利用端点概念,证明:当1<p<∞时,A正交于B当且仅当存在Cq的单位球的一个端点F满足tr(FA)=‖A‖p且tr(FB)=0。特别,两个紧算子A正交于B的充分必要条件是存在一个单位向量x∈H满足‖Ax‖=‖A‖及〈Ax,Bx〉=0。 Let A,B be two Cp -chass operators on a separable complex Hibert space H. The paper discusses some conditions for A to be orthogonal to B in the sense of Birkhoff. In the casewhere 1 〈p 〈 ∞ ,it is proved that A is orthogonal to B if and only if tr(|A |^P-1 U * B) =0 in light of the polar decomposition A = U|A| of A. For 1 〈p〈∞,by using extreme point,it is shown that A is orthogonal to B if and only if there exists an extreme point F of the unit ball of Cq such that tr(FA) = ‖ A ‖ p and tr(FB) =0. It is also proved obtain that for two compact operators A and B,A is orthogonal to B is and only if there exists a unit vector x in H such that ‖ Ax ‖ = ‖ A ‖ and 〈Ax,Bx〉 =0.
作者 杨冲 曹怀信
出处 《南昌大学学报(理科版)》 CAS 北大核心 2005年第6期571-573,共3页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(19971056) 陕西省自然科学研究计划(2002A02)
关键词 Birkhoff正交性 Gateaux可微性 端点 光滑点 Birkhoff orthogonality Gateaux differentiability extreme point smooth point
  • 相关文献

参考文献10

  • 1Birkhoff G.Orthogonality in Linear Metric Space[J].Duke Math J,1935(1):169~172.
  • 2Roberts B D.On the Geometry of Abstract Vextor Spaces[J].Tohoku Math J,1934(39):42~59.
  • 3James R C.Orthogonality in Normed Linear Space[J].Duke Math J,1945(12):291~302.
  • 4Singer I.Unghiuri Abstracte si Functii Trigonometrice in Spatii Banach Space[J].Bul Stint Acad R P Sect Stiint Mat Fiz,1957(9):29~42.
  • 5Saidi B F.An Extension of the Notion of Orthogonality to Banach Spaces[J].J Math Anal Appl,2002(267):29~47.
  • 6Bhatia R.Orthogonality of Matrices and Some Distance Problems[J].Linear Algebra Appl,1999(287):77~85.
  • 7Li C K.Orthogonality of Matrices[J].Linear Algebra Appl,2002(347):115~122.
  • 8Abatzoglou T J.Norm Derivatives on Spaces of Operators[J].Math Ann,1979(239):129~135.
  • 9Holub J R.On the Metric Geometry of Ideals of Operators on Hilbert Space[J].Math Ann,1973(201):157~163.
  • 10Conway J B.A Course in Functional Analysis[M].Springer-Verlag,New York,1985.

同被引文献16

引证文献1

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部