期刊文献+

与σ-sylow塔群同阶型的群 被引量:2

The Same Order Typical Groups
下载PDF
导出
摘要 J.G.Thompson在1987年提出了如下公开问题:Thompson猜想设G_1,G_2是同阶型有限群,且G_1可解,则G_2可解.Thompson猜想是一个相当困难的问题.本文初步研究了这个问题,得到如下:定理5设G_1是σ-sylow塔群,且G_1与G_2同阶型,则G_2是σ-Sylow塔群.推论6设G_1是超可解群,且G_1与G_2同阶型.则G_2是Sylow塔群,因而G_2是可解群.定理7设G_1是幂零群,且G_1与G_2同阶型,则G_2是幂零群. Let G be a finite group and d be a positive integer.Let G(d ) ={ x∈G|xd = 1 }.G1 and G2 are the same order typical groups if | G1 (d)|=| G2(d)|,d = 1, 2, 3,....In 1987 J.G.Thompson made the following conjecture.Thompson conjecture if G1 and G2 are the same order typical and G1 is solvable,then G2 is solvable.In this Paper we prove the following theorems.Theorem 1.If G1 and G2 are the same order typical and G1 is a σ-sylow tower group,then G is a σ- Sylow tower group.Theorem 2. If G1 and G2 are the same order typical and G1 is a supersolvable,then G2 is sylow tower group.Theorem 3.If G1 and G2 are the same order typical groups and G1 is nilpotent,then G2 is nilpotent.
作者 许明春
出处 《海南大学学报(自然科学版)》 1996年第2期103-105,共3页 Natural Science Journal of Hainan University
关键词 同阶型群 σ-sylow塔群 Frobenius猜想 有限群 same order typical groups sylow tower group Frobenius conjecture
  • 相关文献

同被引文献35

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部