期刊文献+

一种改进型的混沌密码算法 被引量:1

A Modified Chaotic Cryptographic Method
下载PDF
导出
摘要 混沌密码算法是一种快速加密算法,在安全性要求较高的领域中,有着非常广阔的应用前景。文中在分析Baptista方法的基础上经过研究改进,对混沌编码算法,提出了一种基于迭代逻辑图的新方案。该方案充分考虑了编码对时间、密码特性等方面的要求,用一个参数来控制密文分布和编码时间,弥补了Baptista方法在编码时间和密码特性等方面的不足。仿真结果显示密文分布更合理,编码时间更短并且编码时间与文本文件的大小呈线性关系,增强了该算法的实用价值。 As a fast encryption algorithm, the chaotic cryptographic method has quite wide applications in the field of security. Based on the analysis of the Baptista method, we propose a modified version of the chaotic cryptographic method based on iterating a logistic map in this paper. The new method includes such considerations as encryption time and the distribution of the ciphertext. Moreover, the trade-off between the spread of the distribution of ciphertext and the encryption time can be controlled by a single parameter, supplied the major drawbacks of Baptista's approach. Simulation results show that the distribution of the ciphertext is flatter and the encryption time is shorter, the encryption time increases linearly with the file size, which made it more practical.
作者 袁春慧
出处 《金陵科技学院学报》 2005年第4期48-50,共3页 Journal of Jinling Institute of Technology
关键词 混沌 密码学 逻辑图 迭代 轨道 chaos cryptography logic map iteration trajectory
  • 相关文献

参考文献3

二级参考文献15

  • 1[1]Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64(8):821~824.
  • 2[2]Pecora L M, Carroll T L. Driving systems with chaotic signals[J]. Phys Rev A, 1991,44:2374~2383.
  • 3[3]Short K M. Steps toward unmasking secure communicatios[J]. Int J Bifurcation & Chaos, 1994,4 (4):959~977.
  • 4[4]Short K M. Unmasking a modulated chaotic communications scheme [J]. Int J Bifurcation & Chaos,1996,6(2):367~375.
  • 5[5]Dedieu H, Ogorzalek M J. Identifiability and identification of chaotic systems based on adaptive synchronization [J]. IEEE Trnas Circuits & Syst I,1997,44(10): 948~962.
  • 6[6]Kocarev L, Parliz U. General approach for chaotic synchronization with applications to communication [J]. Phys RevLett, 1995,74(25) :5028~5031.[J]. Phys RevLett, 1995,74(25) :5028~5031.
  • 7[7]Kocarev L, Parlitz U. Generalized synchronization,predictability, and equivalence of unidirectionally coupled dynamical systems [J]. Phys Rev Lett,1996,76(11): 1816~1819.
  • 8[8]Parliz U, Junge L, Kocarev L. Synchronizationbased parameter estimation from time series [J].Phys Rev E,1996,54(6):6253~6259.
  • 9[9]Kelber K. N-dimensional uniform probability distribution in nonlinear auto-regressive filter structures [J]. IEEE Trans Circ & Syst I,2000,47(9):1413~[J]. IEEE Trans Circ & Syst I,2000,47(9):1413~1418.
  • 10[10]Baranousky A, Daems D. Design o{ one-dimensional chaotic maps with prescribed statistical properties [J]. Iht J of Bifurcation and Chaos, 1995,5(6): 1585[J]. Iht J of Bifurcation and Chaos, 1995,5(6): 1585~1598.

共引文献18

同被引文献3

  • 1孙百瑜,高俊山,吴宏伟.基于置换乱序的混沌加密算法[J].自动化技术与应用,2005,24(2):7-9. 被引量:6
  • 2Kristina Kelber.General Design Rules for Chaos-Based Encryption Systems 2005[J].International Symposium on Nonlinear Theory and its Applications,2005(1):465-468.
  • 3Cuenot J B.Chaos Shift Keying with an Optoelectronic Encryption System Using Chaos in Wavelength[J].IEEE Journal of Quantum Electronics,2001,7(37):849-855.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部